Japanese Handplanes Part 2 : Blade Adjustment

I warn you, if you bore me, I shall take my revenge.

J.R.R. Tolkein

Your most humble and obedient servant has received many requests over the years for explanations about how to setup, adjust, maintain and use Japanese planes. It’s a big subject, enough to fill volumes and volumes, and an important one to woodworkers, but I will try to explain in enough generality that new guys can follow, and in enough detail that professionals may glean something useful.

In this series we will discuss how to adjust a Japanese plane so it works well, how to tune it to increase performance, how to treat the body to reduce warpage and keep it looking good, how to deal with normal wear and tear, how to periodically tap out and dress the ura during sharpening, and of course how to use a Japanese plane.

This last subject is extremely simple but one many amateur users of Japanese planes and most users overseas get wrong. It happens so frequently that I am confident the improvement in Beloved Customer’s personal performance with Japanese planes will improve dramatically from this last subject alone.

The problem with Japanese planes is that, while they are simple tools, they are at the same time more sophisticated than appearances suggests. Dealing with these subtle details without properly understanding them leaves many as confused as a ball of yarn among a dozen big-eyed kittens, so to avoid having too many strands running all over the place, let’s start with the basics, namely how to adjust them. For purposes of this discussion, we will assume our plane is in good fettle to begin with.

Terminology

Your humble servant will not attempt to teach Gentle Readers all the Japanese terms for every part of the hiraganna plane but will try to use standard English language terms wherever possible instead. Indeed, since the plane is a relatively recent tool in the Japanese woodworker’s toolbox, and has a much longer archeological history in the West, it seems silly to use more Japanese words than absolutely necessary to describe something that did not originate in Japan, and can easily be described in English.

I am not a government employee or a legal expert, and so see no need to make things more confusing than necessary. I humbly apologize in advance if this approach offends any purists or employees of the IRS.

The standard handplane in Japan, the one intended to create and/or smooth flat surfaces versus rabbet, chamfer or molding planes, just to name a few, is called the Hiraganna. This word is written 平鉋 in Chinese ideograms and pronounced hee/rah/gahn/nah, without emphasis on any part of the word.

The first character 平 means “flat.”

The second character 鉋 is comprised of two standalone characters combined to make a single character, a common practice in the Japanese language. The one on the left side, 金, means gold or metal, while the one on the right, 包 means “to wrap.”

The character for kanna was not invented in Japan but is said to have been used since the Táng period AD618 – 907 in China, although the tool it represented at the time was a scraper of sorts and not a handplane.

Adjusting Japanese Planes

In order to use a plane of any kind, one must remove the blade to sharpen it, and then re-install the blade and adjust its projection from the body’s mouth to produce a wood shaving of the desired thickness.

Like most wooden-bodied planes, one adjusts a Japanese plane by striking it with a hammer or mallet. To drive the blade further into the wooden body (called a “dai” 台 in Japanese) when installing the blade or when increasing the depth of cut, one taps the head of the blade down into the wooden body. Pretty straightforward. But like most things in life, there are both clever and stupid ways to get even simple jobs done. Let’s consider some of the clever ones, shall we?

The wacky ones can be very entertaining, I know, but I think I’ll leave those for the tool abusers on GooberTube.

Hammer or Mallet

You can use either a metallic hammer or a mallet made of wood, plastic or even rawhide to tap the blade or dai during these operations. They all work just fine, but there are long-term consequences to this selection you need to be aware of.

In Japan a steel hammer is traditionally used by carpenters to adjust planes. Without a doubt it’s convenient and effective, but there are some serious downsides to using a steel hammer you may not realize. Those include:

  1. A steel hammer always mushrooms the blade’s head;
  2. A steel hammer always dings the blade’s pretty face, and most critically;
  3. After many strikes, steel hammers will often crack and even split the wooden body (dai).

A deformed and ugly blade may not be a tragedy, but a split body is an expensive and time-wasting catastrophe, especially if you are a professional that needs his planes to keep cutting.

What did this brightly-polished plane blade do to deserve such barbaric abuse?
All the worst consequences of using a steel hammer on a plane are condensed in this one photo. Notice the mushroomed head of the plane which the owner has probably already ground down several times. We can’t see the blade’s face, but notice how the chipbreaker’s face is all dinged up. And I guarantee you the blade is even more damaged. And of course, the split dai. Tragic! What did this poor innocent little plane do to deserve such barbaric treatment?! And how much of this plane’s useful life did the owner waste?

There may be Gentle Readers who will say: “But I’ve seen Japanese craftsmen using steel hammers to adjust their planes, so it can’t be wrong.” The first part of this observation may be true, but the last bit isn’t. The undeniable truth is that steel hammers have created many ugly, dinged, bent, and mushroomed blades, as well cracked and splintered dai, mostly unnecessarily. Some carpenters are especially abusive of their poor planes, sorry to say, but not all Japanese craftsmen are so inured to the suffering of their tools.

C&S Tool’s planes don’t deserve such violent abuse, so we recommend Beloved Customers use a wooden mallet to adjust them. Without exception. A plastic or rawhide mallet with a wooden handle will work just as well.

Plane Storage

When you purchase a plane, the blade is already installed in the body, although the cutting edge is usually recessed inside the mouth to protect it. The first step, therefore, is to remove the blade and examine it.

If you live in a low humidity area such as Nevada or Arizona in the USA and purchase a plane from a part of the world with high-humidity at times, such as Japan, it is wise to remove the blade and set the plane aside for a few days to let the body become acclimatized, especially if you plan to use the plane in a space with central heating and cooling which may cause the wooden body to shrink in width

If you plan to store your plane for several years in a dry climate, or in a space with central heating and cooling, we recommend you remove the blade and chipbreakers, oil them, wrap them in aluminum foil, and store the body and blades together but without being installed in the body to prevent the blades from restraining the body’s shrinkage causing it to crack. Just to be safe.

Removing the Blade and Chipbreaker

Both the blade and chipbreaker are removed by tapping the chamfered corner of the block behind the blade with a mallet. It is of course possible to loosen the blades by tapping the flat tail end of the block, but there is a risk of striking the bottom edge and deforming the sole. Best avoided altogether.

The physics work best when the mallet impacts are applied in a direction more or less parallel with the blade.

Your humble servant prefers to make this striking chamfer wide to minimize deformation of the body, but this is a personal preference. If your plane’s body is not chamfered, creating it is is an important first step.

The chipbreaker (uragane) must be removed before the blade, but you need to be careful to prevent two unfortunate things from occurring during this process. The first thing to avoid is the chipbreaker jumping out of the block providing Murphy the opportunity for gleeful mischief.

The second thing to avoid is the blade backing out of the body further/faster than the chipbreaker causing the chipbreaker to ride over the extreme cutting edge dulling it. This point is one newbies often overlook until they wonder why the pretty cutting edge they just sharpened is dinged even before they begin cutting.

How does one keep blade and chipbreaker under control? Your humble servant recommends pressing a forefinger onto the chipbreaker and applying pressure upwards when removing it. Do the same on the face of the blade when its turn comes/ as shown in the photos below.

When removing the chipbreaker, apply pressure towards the blade and upwards with your index finger to monitor its movement and help maintain control. It is critical that the chipbreaker moves upward faster the than the blade to prevent the chipbreaker from contacting the sharp cutting edge dinging it.
While applying upward pressure with the index finger on the chipbreaker, tap the chamfer behind the blade to cause the chipbreaker to move up and out of the body’s mouth. BTW, please make it a habit to not strike the center of the chamfer, but instead alternate strikes between the right and left sides of the chamfer to ensure the body will provide long service.

Once the chipbreaker is loose, remove it and go back to tapping the body to loosen the blade further. Continue to apply light pressure to the blade’s face to better monitor the blade’s movement, and to prevent it from jumping out of the body.

The plane used for this example is an extra-wide 80mm finish plane with a blade forged by Yokosaka Masato. The oasaebo steel rod which retains the chipbreaker in-use can be seen tightly installed across the mouth. This is typically never removed over the life of the plane. In the center are the blade and the chipbreaker (uragane). A very nice blade hand-forged from Shirogami No.1 high-carbon steel. To the right is the mallet your humble servant uses for plane adjustments. Notice how the head of the blade is not mushroomed, its pretty face is free of the dents and dings, and the body is free of the dents, cracks and splits that often result from using steel hammers.

Adjusting the Chipbreaker (Uragane)

The chipbreaker is a recent addition to the Japanese plane. In earlier centuries, they had only a single-blade. Unlike the Western Bailey-pattern planes that incorporate the chipbreaker into the linkage necessary to adjust the blade, hiraganna planes work just fine without the chipbreaker. Indeed the chipbreaker’s only role is to reduce tearout, so when tearout is not a concern, removing the chipbreaker will reduce the force necessary to motivate the plane and may even produce a smoother cut.

The chipbreaker of a new plane often needs to be fitted to the blade and body using files and stones, but that is a subject for a future article, so to keep things simple, we will assume the chipbreaker is in good shape and is happily wedded and bedded to its blade.

Gentle Reader is no doubt wondering how to adjust the chipbreaker with the large head of a mallet. The answer is to use the butt of the handle as shown in the photo below. Just hold the mallet’s handle in a fist with the head upward and bring the handle’s butt down on the the chipbreaker. Easy as falling off a log, as my father would say. The connection between the mallet’s head and handle must be quite solid, of course. These mallets are easily made.

Using this technique, your plane blades will look beautiful, and your dai will give many years of reliable service. And although they only have tiny mouths with just a single, shiny, silver tooth, if you look carefully you will sometimes see their clever little smiles.

Using the end of the mallet’s handle to adjust the chipbreaker. Notice that, once again, the index finger is use to monitor the chipbreaker’s movement and to keep it under careful control. To ensure the chipbreaker will do its job, its edge should ultimately be adjusted to be in very close proximity to the cutting edge (>0.002″ (0.05mm). This distance will vary with your plane and the wood being cut, and will require experimentation and fiddling to get right, but with practice, this process will become automatic and intuitive. Be careful to prevent the chipbreaker passing over the cutting edge as this may dull the blade causing Gentle Reader to say undignified things and the iron pixies skulking in your workplace to howl with glee.

To remove or back-out the chipbreaker, one strikes the dai as if loosening the blade, but with a finger on the chipbreaker to keep it from dragging over and perhaps dulling the blade’s cutting edge.

When adjusting the chipbreaker, sometimes the blade will shift position too, so a back and forth adjustment of blade-chipbreaker-blade is sometimes necessary. The tighter the fit of the blade and chipbreaker in the body, the more fiddling is required, so craftsmen such as joiners, sashimonoshi and cabinetmakers that routinely make fine, precise cuts and sharpen frequently tend to prefer thinner blades that fit into the body with less force and are easier to adjust than do carpenters who perform less refined work.

We will delve into this aspect of handplane setup in our journey ass over teakettle down the rabbit hole in a future post.

Adjusting the Blade

In order to take a clean full-width cut, the blade must project from the mouth the appropriate amount, and evenly across its width. In other words, it must not project too far, nor too little, and one corner of the blade must not be projecting more than the opposite corner.

To evaluate the blade’s projection through the plane’s mouth, hold the plane upside down to a light-colored uniform background and look along the plane’s sole. The correct projection will be a thin line of uniform height across the width of the sole. If one side of the blade is projecting more than the opposite side, the blade is either skewed in the body, or it is shaped skewed.

If the blade is skewed, tap the head to the right or left with the mallet. If, however, a few taps fails to make the projection uniform, the blade’s cutting edge must be reshaped.

Please be aware that continued lateral pounding on the blade will not improve the situation and may damage the wooden body.

Most planes allow a little bit of wiggle room for the blade, but sometimes, especially if the body shrinks in width due to reduced ambient humidity, the notches in the side of the mouth may need to be pared slightly deeper, or the blade ground narrower, to provide this right/left wiggle space. Be very careful, however, to avoid paring these grooves more than a thin shaving or two wider because removing wood at the grooves directly and irrevocably weakens the weakest point in the wooden body.

Looking down the sole to ascertain the blade’s projection, the black line visible at the top of this photo. A light-colored, uniform background is helpful for this. In this case, two adjustments are necessary. The first problem is that the blade is projecting too far. This is easily resolved by tapping the chamfer behind the blade, something that, with practice, can be done while the plane is held upside-down in this position. The second problem that must be resolved is the skew evidenced by the blade’s projection being much greater on the left side of the photograph.
Adjusting a skewed blade by tapping the blade’s head laterally. If a few taps will not correct a skewed blade, it probably needs to be reshaped to correct a skew that developed during sharpening.
A much smaller, useful projection with just a tiny bit of residual skew that must be corrected. When taking extremely fine finish cuts, the ability to determine the blade’s projection sometime seems more clairvoyant than simply optical.

To test the projection of the blade, and ensure skew has been removed, hold a a short, narrow piece of softwood such as pine or cedar in your hand and run it over the cutting edge, first on one side of the blade, then the opposite side, and finally the center, and observe the shavings (if any) produced. They will tell you the truth. Be careful not to shave your fingers unless they have become hairy (ツ).

Even experienced craftsmen betimes become gutted, gobsmacked, and guragura upon discovering their otherwise perfect plane blade has become skewed and is projecting too far on one side to be adjusted for a good cut without resharpening it. Of course, the culprit is almost always pernicious pixies, but a wise Beloved Customer (are there any other kind? Nah!) will be careful to follow Petruchio’s example and tame the skew. And don’t forget to use a hardened stainless steel straightedge to check the blade for square when sharpening.

Striking the Body of the Plane

Your humble servant does not want to seem repetitious, but just so there is no confusion, I feel compelled to review a point or two before we end this discussion.

When backing out or removing the blade, make it a habit to strike the chamfered edge of the dai behind the blade alternating between the right and left sides instead of dead-center.

Also, angle your strikes so they are more or less parallel to the long axis of the blade. With a little practice this will become second nature. The reason for this action is simply that it is both more effective and at the same time helps to keep the dai in one piece.

Please, never strike the flat tail end of the plane’s body, but only the chamfered top edge of behind the blade. Too many people who strike the flat end of the tail get carried away and end up damaging the sole.

If you examine your plane you will notice that there is actually very little wood holding the plane’s body together in the mouth area. Indeed the only continuous wood is at the sides, and it is only as thick as the distance between the bottom of the blade grooves and the exterior sides of the body. Not a lot of meat.

If we strike the body’s tail in the center, the body, being relatively unsupported in this area, must flex creating stresses, sometimes enough to crack, sometimes even enough to split it. This sort of damage is common, but almost entirely avoidable because, if we strike the right and left extremes of chamfered edge behind the blade, stresses will be carried through the stronger sides reducing the chances of cracking and/or splitting the tail. You can feel and even hear the difference if you pay attention.

If you don’t care how your plane looks, and prefer replacing or fixing their wooden bodies instead of using them, by all means disregard this suggestion. You might want to get some extra bubble wrap to keep yourself entertained while the bolt and epoxy repair to your plane’s broken body cures.

Damage to the body or blades of C&S Tool’s planes caused by the incorrect use of metal hammers will void the tool’s warranty.

In the next post in this adventure we will discuss how to modify a Japanese plane’s body to make it easier to use.

And please remember the wise words of the Sage of Possum Lake: “Remember I’m pullin’ for ya–we’re all in this together.”

YMHOS

The end view of an amazing nagadai plane body by Inomoto-san made from a piece of Japanese White Oak combining “Oimasa” grain orientation and the highly-desireable ripple grain. In oimasa orientation, the dense, tough, light-colored medullary rays are oriented towards the sole, making the sole wear slower. Using plain-sawn wood will direct even more of these rays to intersect the sole further reducing wear, but at the same time would increase the tendency of the sole to warp. On the other hand, orienting the annual rings vertically in a “quartersawn” configuration would maximize the body’s stability, but at the same time would cause the sole to wear quicker while making the body less resistant to cracking and splitting. Oimasa orinetation shown in this photo is a compromise intended to reduce warping without reducing strength and to improve the sole’s wear resistance. Ripple-grain white oak is not only more beautiful, it contains more of the harder Winter wood making it both more wear-resistant and more stable than ordinary white oak.

If you have questions or would like to learn more about our tools, please click the “Pricelist” link here or at the top of the page and use the “Contact Us” form located immediately below.

Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google, fascist facebook, or thuggish Twitter and so won’t sell, share, or profitably “misplace” your information. May my plane blade be forever skewed if I lie.

Other Posts in the Japanese Handplane Series:

Four Habits and Three Mysteries

The carpenter dresses his plank, the tongue of his foreplane whistles its wild ascending lisp

Walt Whitman, “Song of Myself,” Leaves of Grass

When working in wood the professional aiming for efficiency must continue the work of accurately cutting or shaving wood just as long as possible without stopping to sharpen his blades too frequently because time spent sharpening is time the primary job isn’t getting done. The wise professional therefore needs chisels, planes and knives with cutting edges that not only become very sharp and cut exceptionally well, but stay sharp a long time. C&S Tools are handmade one at a time by master blacksmiths to meet the expectations of Japanese professional woodworkers for sharpness and edge retention.

Alas, even our tools do not have eternally-sharp cutting edges, and at some point must be resharpened to maintain work efficiency and product quality. The experienced professional craftsman will develop unconscious habits to help him constantly monitor the condition of his blades and the quality of the work being performed. In this post we will examine a few ancient techniques for doing so.

The Four Habits

As the saying goes, “timing is everything.”

If Beloved Customer pays attention, you will discover there is a point where a woodworking tool’s blade still cuts, but its cutting performance begins to drop off. Sensing this point in time is critical because if you continue cutting wood much past this point, not only will the energy needed to motivate the blade increase dramatically, but the quality of the cutting done will quickly deteriorate while the time and stone expenditure necessary to resharpen the blade will increase. That’s three variables in the blade, the work and the craftsman that could be expressed in a pretty graph if one was so inclined, a graph that would have at least one inflection point. Which variable is most important to you?

In most cases, when considered from the viewpoint of a craftsman that uses and sharpens his tools daily, and needs them to be quite sharp, minimizing wasted of time and stones over the years tends to be the governing variable because it costs the most money.

Most woodworkers fail to consider these efficiency variables; They simply keep cutting away until the tool either becomes too difficult to motivate, or it stops doing an acceptable job, then stop work and sharpen the blade. This is normal, but the wise woodworker will focus on minimizing the total time and total cost required to maintain his tools even if it means he must pause work to resharpen his blade well before its performance deteriorates badly.

This sharpening inflection point will vary from blade to blade and job to job because every blade, every piece of wood and and every user are unique. Simply counting strokes is not enough. It takes attention and practice to sense when a blade has reached this point.

The following are some things you should pay attention to, and habits you should develop, to help you identify the sharpening inflection point.

Habit No. 1: Sense Resistance Forces: As you use a tool, a plane, chisel, or saw for instance, tune your senses to detect the point at which the blade becomes more difficult to motivate. As the blade dulls, the force that you must apply to the tool to keep it cutting will gradually increase. This is especially noticeable when planing and sawing. Develop the habit of paying attention to this force so you can determine when it is time to resharpen. Your humble servant recommends you regularly use an oilpot to ensure any increased resistance is due to a dulled blade and not increased friction between the tool and the wood;

Habit No.2: Listen to the Music: Pay attention to the tool’s song. That’s right, turn off the radio and CD player and listen to the music your blades make instead. If you do, you will notice that each tool sings its own song, one that varies with the wood, the cut, and the condition of the blade. Is the blade singing, lisping, or croaking as it chews wood? Is it a saw with a basso profundo voice, or a mortise chisel with vibrant tenor tones, or perhaps a soprano finishing plane singing a woody aria? A sharp blade makes a clearer, happier sound when cutting or shaving wood than a dull one does. Learn the happy song it sings when it’s sharp and the sad noise it makes when it’s dull, and all the changing tones in between. If you have ears to hear, it will tell you what kind of job it is doing and when the time has come to resharpen it;

Habit No.3: Eyeball Cuts: Watch the tool and the wood it has cut. Is your chisel cutting cleanly, or is it crushing the wood cells? A sharp chisel blade cuts cleaner than a dull one. You can feel and hear the difference. And you can see the difference in both the shavings or chips and the surfaces the tool leaves behind. Don’t be a wood butcher: develop the habit of frequently checking the quality of your cuts. It doesn’t take extra time, and your tools will wiggle with happiness;

Habit No. 4: Feel Surface of the Wood: Is your plane shaving the wood cleanly, or are the surfaces it leaves behind rough with tearout? Develop the habit of running your fingers along the path your plane just cut to sense surface quality. If you detect roughness or tearout, the plane may be out of adjustment, or more likely, the blade is becoming dull. Or maybe you need to skew the blade, change the direction of the cut, or moisten the wood’s surface with a rag dampened with planing fluid (I use water, industrial-grade busthead whiskey, or unicorn wee wee when I can get it). Next, run your hand across the cut your plane just made to detect ridges that may have been created by irregularities or chips in your blade’s cutting edge. Every one of those ridges indicates a small waste of your time and energy and a flaw in the wood. Don’t forget that the top of those ridges contain compressed cells (kigoroshi) that may swell and become even more pronounced with time. This is accomplished with a few swipes of the fingertips along and across the wood between cuts without spending any time.

These techniques are not rocket surgery. They don’t take extra time. They can be applied to any tool all the time. The key is to pay attention. To listen to one’s tools. To watch their work.

Let’s next shift our attention to three of the Mysteries of Woodworking, their potential impacts on mental health, and how to avoid unfashionable wardrobe decisions.

The Mystery of the Tilting Board

To discuss this Mystery, we will call on the services of my old buddy Richard W. (Woody) Woodward. You may remember him from a mystery story in previous article. Yes, it was a near thing, but he has fully recovered from the effects of chugging a 5th of tequila in an emotionally-charged bout of drama over a brittle blade.

Anyway, this mystery goes something like this. Woody is planing a board about the same width as his plane’s blade down to a specific thickness, but for some unfathomable reason, the board ends up thinner on one side of its width than the other. He checks the blade’s projection from the plane’s mouth, but it is absolutely uniform. In fact to make the board the correct thickness he ends up having to tilt the blade to take less of a cut on one side of the board than the other.

Most everyone has experienced this curious and wasteful phenomenon, but because it is not consistent, many never solve the mystery of the tilting board, but blame it on Murphy’s antics or Pixie play. But never fear, because the solution is elementary, Dear Watson.

In Habit No. Four listed above, your humble servant mentioned residual “ridges.” Please be aware that these ridges are not only unsightly and may damage applied finishes later, but they can actually keep your plane from cutting shavings of uniform thickness. Think about it.

Let’s assume you are planing a board the same width as your plane blade, but the blade has a tiny chip near the right end of the blade that leaves behind a .0005″ high ridge on the board’s surface. With each subsequent cut using this same blade with the same defect the right side of the plane’s body and likewise its blade will be elevated above the board’s surface by .0005″, while the left hand side, which doesn’t have any ridges for the plane’s sole to ride on, is shaved the normal amount.

Assuming you checked that the blade is projecting from the plane’s mouth the same distance across its entire width, with each pass the surface of the wood becomes tilted, a little high on the right side and a little low on the left, so that instead of a flat surface square to the board’s sides, you have produced a flat surface that is thinner on the left side and thicker on the right. This is no bueno, amigo.

If you detect ridges on a freshly-planed surface, immediately check the blade’s cutting edge by running a fingernail along it’s width. Don’t worry, it won’t dull the blade unless you are also a bricklayer. Your nail will feel the catch and grab of defects too small for your eye to see. A few small ones may make no difference, but on the other hand, they might make a big difference.

With this the Mystery of the Tilting Board, one that has driven many a woodworker to distraction, sometimes even leading to fashion decisions involving stiff, canvas jackets with long sleeves connected to straps and buckles that fasten behind the barking woodworker’s back and even pass under the crotch (decidedly uncomfortable, I assure you), has been solved. Only the Beloved Customers and Gentle Readers of the C&S Tools’s Blog can be assured of avoiding this undignified state. Sadly, all others must be responsible for their own mental health.

The Mystery of the Missing Plan

Here is another mystery of woodworking, one that especially vexes those tender souls new to the calorie-burning fun of dimensioning wood by hand.

Let’s say Woody needs to turn a bunch of twisty, banana-shaped boards into flat, square, precisely dimensioned and cleanly-surfaced drawer fronts, for example. All the adjectives after “banana” in the previous sentence are critical to his project’s success because Woody’s ambitious objective is to make 24 piston-fit drawers. Let’s also assume the wood he uses for each drawer-front is unique in both appearance and warpage. It’s a heck of a lot of wood to cut and with no time to waste, so our erstwhile wood butcher gets out his trusty handplane, sharpens it up, adjusts the blade and chipbreaker, gives it a kiss for luck, and without further delay makes the shavings fly through the air in glorious fashion!

But wait a minute! No matter how much Woody planes, he just can’t seem to make some of the surfaces flat, free of wind and the sides square to the faces. It’s like some kinda frikin moving target! Indeed, eventually he is dismayed to discover some of the edges are getting too thin. What to do, what to do!?

Drama queens typically begin interesting antics at this point, but not so our Beloved Customers who, unlike Woody, are stoic, laconic, intelligent and of course, sharply-dressed, and therefore pause their physical efforts to focus their mental powers on solving this mystery. At this point BC’s benchdog perks up his ears and tucks in his tail in fear of the humming emanating from his master’s ears, his benchcat arches his backs, hisses like a goose, and flees the workshop like his tail is on fire, and the resident pixies frantically hide in the lumberpile to avoid being disrupted by the power they sense radiating outward from BC’s mighty brain.

Of course, the conclusion you eventually arrive at is operator error. After then there is cat urine to deal with…..

Too few people really pay attention when using their tools, focusing too much on the joy of making as many chips or shavings as quickly as possible without a plan. For example, a failure common to many woodworkers is to start planing without first identifying and marking the high spots that must be cut down first, and then areas to be cut down next. In other words, they fail to plan the sequence of the work. The result is that time, steel and sweat is wasted cutting wood that didn’t need to be cut while ignoring wood that did need to be cut. And all for lack of a plan measured with a straightedge or dryline and written on the board with a few strokes or circles of a lumber crayon or carpenter pencil

This mystery too has been known to increase profits of the mental health industry and even (heaven forfend!) fashion decisions involving poorly-tailored canvas jackets with crotch straps. Simply not to be borne!

The Mystery of the Sounding Board

Lastly, we come to perhaps the most frustrating and least-understood of the Mysteries of Woodworking. Not to say there are no other mysteries, because there is always that most ancient of riddles that baffled even the enigmatic Sphinx, one which has been repeated endlessly since before Pharaoh wore papyrus nappies, of why Woody would respond honestly to his wife when she asks him if her new pair of jeans makes her bottom look “simply humongous.” Sadly, this is one mystery upon which your humble servant is unable to shed light because even I do not fully understand the heart of woman.

But I digress. This Mystery is one that torments those badly befuddled souls like friend Woody who, lacking a plan to follow, eyes that see, hands that feel and ears that hear, unwisely assume that the board they are working on is stable simply because it doesn’t walk away from him. Perhaps it is the malevolent influence of pernicious pixies that causes himm to ignore the downward deflection the pressure of their plane unavoidably induces in a warped, unevenly supported board, or in a board being planed on a flimsy or crooked workbench.

This unintentional, indeed unnoticed deflection too often causes the board to escape the cutting blade resulting in hills being raised and valleys remaining low where flat surfaces were required. Of course, this leaves the handplane bitterly dissatisfied because it wanted to do good work too.

But this waste of wood, steel, sweat and goodwill can be avoided because, even if the board isn’t rocking like Zepplin and dear Woody can’t feel the board deflecting away from his plane’s cutting edge, he could detect the change in his plane’s song when it is cutting an unsupported area of a board if he only listened because the board is also a “sounding board.”

Think of all the money saved that Woody would otherwise spend on lithium, Prozac, and small hotel rooms with padded walls to ease his mental anguish if only he had the foresight to make a plan, train his hands and eyes to confirm his tool’s performance, and his ears to listen to what his plane tries to tell him.

The experienced professional will investigate each board, make a plan for his work, mark the plan on the wood, shim the board so it is evenly supported on a flat workbench surface, and sharpen his blade if necessary before making a single cut. Then instead of cutting randomly like a modern artist wielding a paintbrush, he will make each cut intentionally, purposefully, in accordance with his plan to make each cut as efficient as possible.

He will also pay attention to the reaction of the wood and feedback from his tools during each cut. He will use the four habits discussed above, and maybe even a drop or two of unicorn wee wee to limit tearout if his budget allows.

If Beloved Customer doesn’t have a master to give you a dirty look or to box your ears when you impatiently err, you must train yourself. Slow down. Make a plan. Execute the plan. Pay attention, use your senses, and spend the time needed to evaluate progress against the plan. Consider carefully why the work is going well or why it is not. This process will slow the work down at first, but over time it will help you develop good habits and guide you along the path to becoming a master craftsman instead of just the typical woodcutter.

May the gods of handsaws smile upon you always.

YMHOS

If you have questions or would like to learn more about our tools, please click the see the “Pricelist” link here or at the top of the page and use the “Contact Us” form located immediately below.

Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google, fascist facebook, or thuggish Twitter and so won’t sell, share, or profitably “misplace” your information. If I lie may my straightjacket dig into my crotch.