Sharpening Part 5 – The Sharp Edge

The gem cannot be polished without friction, nor man perfected without trials.” 

Confucius

This post may not be as entertaining as my previous ones on the subject of sharpening Japanese woodworking tool blades: No swords or artwork or handsome Hollywood philosophers, I’m sorry to say. But with this post we will roll up our sleeves and dig into unartistic nitty gritty. I pray tender sensibilities are not offended. Many of my Gentle Readers already know most of what I will present in this post, but it is my fervent hope that one or two useful gems are hidden among the gritty.

You know the difference between the quality of work a sharp edge performs compared to that of a dull edge. Cuts are clean and finished surfaces are smooth, maybe even shimmering. Your tools are happy, singing and chirping as they cut away. But have you given thought to what a sharp edge really is?

Since the purpose of sharpening is to produce this condition in a blade, a clear understanding is useful. We will consider the basics in this post.

We shall also examine the naughty cutting edge that seems sharp but suddenly and unexpectedly dulls after just a little use. Would it be useful to know how to detect such a cutting edge before it fails wasting your time and money?

Let’s begin with bedrock basics.

The Basics

A cutting tool is essentially a wedge, with two flat sides meeting at an angle. Applying force causes it to sever materials, be it wood, metal, meat or mushrooms.

The geometry of this wedge is critical to its performance. At one extreme, the angle could be 90°. It won’t be sharp, it will be hard to push, and it will crush and tear wood instead of cutting it cleanly, but it will be durable.

At the other extreme, the wedge might be made more acute, say 3°. It could be extremely sharp indeed, but it would be too fragile to cut anything but whip cream for long. The point is that the sharp edge is a compromise, acute enough to cut well, but not so acute that cutting pressure and friction will make it dent, roll, wear away, crack or chip easily.

The effective blade must have a bevel angle that cuts the intended material well for a relatively long time. The words “well” and “long” in the previous sentence are where the magic lies. We will examine these important points in future posts in this series.

Germ’s Eye View

The extreme edge of the ideal metal tool’s extreme cutting should be perfectly smooth and only a single molecule thick. In the real world, cutting edges are rougher and wider, but still manage to cut pretty well.

Examine a sharp cutting edge under a microscope, and you will see imperfections. A dull blade will look even worse of course, showing dents, rips, and even cracks. 

knife edge_microscope800
The edge created by an 800 grit stone
Still sharp but starting to wear
A dulled and dented knife blade

Using a blade wears away and damages the cutting edge rounding and flattening it, destroying the geometry that makes it an effective wedge. Sharpening is the process of (1) restoring the intended wedge geometry; and (2) removing defects from the meeting of the wedge’s sides by abrading metal from one or both sides down past any damage, leaving a relatively clean, uniform wedge with minimal defects. This is the sharp edge. It is what the wood experiences. It requires effort to achieve, but it ain’t rocket surgery.

The most difficult part of achieving the two objectives listed above is making nothing from something, in a place that cannot be seen. Now that’s a Zen koan.

Building confidence in one’s ability to achieve results at the microscopic level is not easy. The key is to understand the goal, and to consistently follow reliable procedures. I will describe those goals and procedures in future posts in this series.

Edge Failure

The ideal cutting edge is uniformly sharp, but few edges in the real world meet these severe criteria at the microscopic level where it matters most. A blade may be sharp in some places, and dull in others. Likewise, a blade may cut well for a while and then dull quickly and suddenly. We have all experienced these irritating failures.

One common cause of these inconsistencies and failures is that the edge is sharp only because it has a defect called a burr. Burrs by themselves can be sharp indeed, but they are fragile and can bend, roll over, or break off at the root suddenly and unpredictably creating a nasty dull edge in an instant. A truly sharp edge will not just feel sharp, but will stay sharp for a relatively long time because it is properly shaped and well supported, instead of being only temporarily sharp because of an irregular and fragile burr.

I call burrs a “defect” because they are, but creating a burr is an important step in making a sharp edge. The trick is to continue to refine the wedge after the burr is created until it is gone and the edge is as perfect as we can reasonably expect to make it. Stop the refinement work too soon, or fail to do it completely, and all or part of that unreliable burr may survive to cause trouble.

So how does one tell if an edge is properly sharp and free of deceptive burrs without using a scanning electron microscope?

Do you remember ‘Nando’s philosophy described in my previous post? One must use reverse logic from our latin lover. Don’t rely on mahvelous appearance. Don’t rely on bar room tricks like shaving arm hair or cutting strips of paper. Develop skills and train your senses other than eyesight to detect the shape of steel at the microscopic level. This may sound strange but it is possible because your nerve endings are microscopic and can sense the difference between a burr and a truly sharp edge.

I will save the explanation of detailed techniques for a future post, but for now, here are two essential skills: Use your fingerprints to detect the presence and size of burrs. Use you fingernails to check the condition of the burr and determine when the blade is ready to move onto the next stone in the sharpening process. Please don’t cut yourself.

In the meantime, let’s have some pleasure before pain. Prepare to be amazed, Ladies and Germs, because in Part 6, coming soon, The Mystery of Steel will unfold before your very eyes! There will be marble relief carvings, bronze statues, oil paintings, gods and demons, death and destruction, and even a pagan soap opera about forbidden love. Oh my! We’re in negotiations for the movie rights now ♫꒰・‿・๑꒱ and need someone to play Vulcan. If anyone knows Spiderman’s agent, please have his people contact my people right away.

YMHOS

Links to Other Posts in the “Sharpening” Series

Sharpening Japanese Woodworking Tools Part 1

Sharpening Part 2 – The Journey

Sharpening Part 3 – Philosophy

Sharpening Part 4 – ‘Nando and the Sword Sharpener

Sharpening Part 5 – The Sharp Edge

Sharpening Part 6 – The Mystery of Steel

Sharpening Part 7 – The Alchemy of Hard Steel 鋼の錬金術

Sharpening Part 8 – Soft Iron 地金

Sharpening Part 9 – Hard Steel & Soft Iron 鍛接

Sharpening Part 10 – The Ura 浦

Sharpening Part 11 – Supernatural Bevel Angles

Sharpening Part 12 – Skewampus Blades, Curved Cutting Edges, and Monkeyshines

Sharpening Part 13 – Nitty Gritty

Sharpening Part 14 – Natural Sharpening Stones

Sharpening Part 15 – The Most Important Stone

Sharpening Part 16 – Pixie Dust

Sharpening Part 17 – Gear

Sharpening Part 18 – The Nagura Stone

Sharpening Part 19 – Maintaining Sharpening Stones

Sharpening Part 20 – Flattening and Polishing the Ura

Sharpening Part 21 – The Bulging Bevel

Sharpening Part 22 – The Double-bevel Blues

Sharpening Part 23 – Stance & Grip

Sharpening Part 24 – Sharpening Direction

Sharpening Part 25 – Short Strokes

Sharpening Part 26 – The Taming of the Skew

Sharpening Part 27 – The Entire Face

Sharpening Part 28 – The Minuscule Burr

Sharpening Part 29 – An Example

If you have questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google or incompetent facebook and so won’t sell, share, or profitably “misplace” your information.

The Varieties of Japanese Chisels Part 12 – The Usunomi Paring Chisel (薄鑿)

Our thoughts flow to our hands; our tools become as part of our bodies, the blade of our bodies.

Tsunekazu Nishioka, Temple Carpenter, Horyuji Temple Restoration, Nara Japan.
Tsunekazu Nishioka

In the first post in this series, we examined the two main categories of Japanese chisels: the tatakinomi designed to be struck with hammer, and the tsukinomi used to pare wood without using a hammer. Beginning with this post we will shift our focus to several varieties of tsukinomi.

If you need to cut precise joints in wood, then you need both striking and paring chisels.

The most popular variety of tsukinomi is the mentori usunomi (面取り薄鑿)which translates to “beveled thin chisel.” The name is appropriate as the blade is long and thin and the neck gently tapered.

42mm Mentori Usunomi by Sukezane (Side View)
42mm Mentori Usunomi by Sukezane (Face View)
42mm Mentori Usunomi by Sukezane (Ura View)
42mm Mentori Usunomi by Sukezane (Face View)
24mm Mentori Usunomi by Sukezane (Face View)
24mm Mentori Usunomi by Sukezane (Face Closeup)
24mm Mentori Usunomi by Sukezane (Ura View)
24mm Mentori Usunomi by Sukezane (Ura Closeup)

Description

Just as with oiirenomi, the blades of tsukinomi can be made with different profiles, such as the rectangular cross-section of the kakuuchi, or the more triangular cross-section of the shinogi.

The usunomi has the more streamlined cross-section of the mentori oiirenomi with two bevels ground into the right and left sides of the blade’s face, flowing over the shoulders and feathering into the neck.

An atsunomi or oiirenomi can pare joints, of course, but the steel crown and mushroomed wood fibers on the handle’s end make them uncomfortable for such jobs. More importantly, the blades and handles of these chisels are often too short to provide adequate angular control. In short, the usunomi is more comfortable to use, and pares wood more powerfully and more precisely.

Western paring chisels by comparison are even thinner and have longer blades than Japanese paring chisels. There can be no denying they do a fine job. Japanese paring chisels like the usunomi have a few potential advantages worth considering, however.

The most significant advantage is that the steel cutting edges of Japanese paring chisels are much harder. The paring chisels my blacksmiths forge are around 65~66 Rc , whereas Western paring chisels are usually around 55 Rc. A Western style paring chisel with its thin blade of uniform steel hardened to 65 Rc would easily snap in half if stressed. This extra-hard steel makes possible an edge that stays sharper longer, with the result that, given the same number of sharpening opportunities and time in a given workday, a professional-grade usunomi will help you do more hours of high-quality work than a softer blade. For craftsmen that use their tools to feed their families this higher-level of performance is not something to be sniffed at.

The second advantage of the Japanese paring chisel is their hollow-ground ura which makes it easier to maintain a flat bearing surface. If you haven’t used Japanese chisels, this claim may sound unlikely. But please recall that there are narrow lands surrounding the ura, all in the same plane, that create a flat bearing surface to guide the chisel.

Usage

This tool is well-suited to reaching into narrow mortises and other wood joints to clean and pare surfaces roughed out by axe, adze, saw and tatakinomi to precise tolerances.

It excels at trimming mortise side walls and end walls. And shaving tenon cheeks and shoulders to precise dimensions without causing spelching or cutting too deeply as shoulder planes are wont to do is a piece of cake.

In addition, the longer blade and flat face of the usunomi make it ideal for paring angles, such a 45° mitres, in combination with wooden guide blocks or jigs.

The usunomi may be struck with the heel of the hand, but never with a hammer or mallet. The slender neck, thin blade, and unreinforced handle will simply not accept such abuse gracefully.

Chisels intended to be struck with a hammer typically perform best with a cutting edge bevel of 27~30°. Any shallower and the hard steel at the cutting edge may chip instantly dulling the tool. However, the cutting edges of usunomi along with other tsukinomi are not normally subjected to the high stresses chisels motivated with hammers must endure, so the cutting efficiency can be increased by lowering the angle to 24° or so without creating problems, depending of course, on the wood you need to pare and the type of paring you intend. For instance, paring end grain may require a steeper angle than long grain.

If you have used long-bladed Western chisels hard for a few years, you will have no doubt experienced your chisel’s flat becoming somewhat rounded over many sharpenings. This occurs because, for various reasons, the center portion of the blade’s flat is abraded at a slower rate when being sharpened than the blade’s perimeter, resulting in distortion regardless of whether you keep your stones perfectly flat or not.

Obviously, a chisel with a flat that is banana-shaped lengthwise and crosswise is not ideal for paring flat surfaces, but there is a bigger problem. Namely, it is simply more difficult and time-consuming  to create a sharp edge on a blade with a curved flat than one with a true flat. A flat like this begs for amateurish tricks using rulers, etc.. of the sort professionals would be embarrassed to use. A friend once scathingly described these techniques as “training wheels.” Oh my.

The ura on the Japanese chisel is specifically designed to deal with this shortcoming, and it does a great job of it.

30mm Unsunomi by Nagamitsu – View ofFace
30mm Unsunomi by Nagamitsu – View of Mitsuura

The 30mm usunomi in the photo above has an ura with three hollow-ground areas instead of one. This detail is called a ” mitsuura” ミツ浦 meaning ”triple ura.” It has the advantage of providing a larger bearing surface than the standard ura does, one that is helpful when using wooden jigs for paring to precise angles, for instance. It also helps the ura index better when paring large surfaces, especially with chisel blades wider than 24mm.

Some people prefer chisels with the mitsuura detail for their appearance. I admit mitsuura look sexy, but I am not a fan of using this detail unless it is truly necessary because of the downsides I will not deal with in this already overlong post.

If I can liken the atsunomi to a shire horse, then the usunomi is a falcon. Both are beautiful powerful animals, but just as one wouldn’t use a draught horse to chase down a rabbit, or a peregrin to pull a plow, neither oiirenomi nor atsunomi are as effective as the usunomi for paring and cleaning joints.

The usunomi is one of those tools that is a pleasure to use.

Among woodworking tools, the usunomi is special: as it becomes part of your hand, you will discover that neither the blade nor your hand but your mind is shaping the wood.

YMHOS

Links to Other Posts in this Series

If you have questions or would like to learn more about our tools, please use the “Contact Us” form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google, incompetent facebook, or troublesome Twitter and so won’t sell, share, or profitably “misplace” your information. May the plagues of Egypt fall upon me if I lie.