Sharpening Part 8 – Soft Iron 地金

If you can’t explain it to a six year old, you don’t understand it yourself.

Albert Einstein

In the previous post on sharpening Japanese woodworking tool blades we looked primarily at the nature of the hard high-carbon steel used in making woodworking blades. In this post I will try to dispel some of the confusion that surrounds the other metal used in making most Japanese knives, axes and woodworking blades, namely the soft low-carbon steel called “Jigane” (地金). I hope this brief explanation will improve your understanding of some Japanese tools and aid your sharpening efforts.

Sources of Jigane

Most Japanese knives and woodworking blades are comprised of a thin piece of hard high-carbon steel, discussed in my previous post, forge-weld laminated to a piece of softer low-carbon steel or wrought iron called “Jigane” (地金) in Japanese, which translates directly to “ground metal.”

I will write more about this bi-metal lamination in the next post in this series, but for now take my word that it is essential to the performance of many types of Japanese cutting tools nowadays, and for many centuries was critical to manufacturing cutting tools in America and Europe as well.

The best jigane material for plane blade bodies is said to be scrap iron from the boilers of old trains, boats, and factories, etc.. Such boiler tanks were subjected to thousands of heating and cooling cycles during their years in service which drove out impurities, including carbon, making the iron very soft to the point of weakness.

The most desirable jigane for plane blades is called “tired” iron, named because it is not only soft, but looks weak and exhibits a visible grain along with cracks and imperfections which those familiar with Japanese plane blades covet.

A pile of jigane, probably old salvaged structural steel. Looks like boards of old wood, but it ain’t.

Wrought Iron Production

Nowadays, this very low-carbon steel, also known as “ wrought iron” is not produced in any volume for several reasons. First, demand is just too low to make it worthwhile to manufacture. Hand-forged ornamental iron is the only commercial usage besides Japanese tools, truly microscopic markets.

The second reason is that steel manufacturing processes have changed drastically in the last 100 years. For instance, it used to be that steel began as iron ore, basically rocks and dirt, which was melted and refined into low-carbon wrought iron, so wrought iron was an intermediate product of steel production. Indeed, this low-carbon product was much less expensive to produce than high-carbon steel and so was used for everything from the boilers, bridges, trains, ships and anchor chains mentioned above to axes, chisels, farming implements, machinery, what’s called “miscellaneous metals” in the construction industry, and of course plane blades. There are still a few surviving structures that were made using this archaic material.

Nowadays, things are very different. Carbon is incorporated into the steel early in the manufacturing process, so low-carbon wrought iron never becomes an intermediate product.

Also, scrap metal has become critical to steel manufacturing processes nowadays. Remember what happened to steel prices worldwide when China was buying up huge volumes of scrap metal worldwide for its Olympic infrastructure building projects?

I think we can agree that this energy-efficient cost-reducing recycling of natural materials, one that was hardly an option 150 years ago, is a very good thing. But it does have a tiny downside, namely that most commercially-available scrap metal available in any useful volume today has been through the modern steel-manufacturing process many times and already contains not only high levels of carbon, relatively speaking, but alloys such as chrome, molybdenum, and nickel from previous melting pots. Indeed, undesirable chemicals such as phosphorus, sulfur and silica tend to be high in general junkyard scrap metal. On the other hand, keeping these unintended alloys and impurities under control is a serious challenge for manufacturers of tool steel.

In summary, wrought iron simply isn’t made anymore, and it is not a sustainable, profitable product.

Japanese blacksmiths making high-quality plane blades nowadays mostly use wrought iron recycled from old anchor chains, old iron bridges, or other recycled iron structural components. If you see a hole in a plane blade, like the extra-wide plane blade pictured at the top, it once housed a rivet. Yes, structural steel was once connected with hot rivets instead of bolts. Hi-tensile modern bolts are better.

Plane Blades

A plane blade by Ogata-san in his “Nami no Hana” series using Swedish Asaab K-120 steel. Notice not only the fissures and defects, but also the striations and grain typical of soft, tired “wrought iron.”

Mr. Takeo Nakano (see his photo below) makes my plane blades. He is a kind, quite man with the outward appearance of a sedentary grandfather, but when using hammer and tongs at his forge within his dark smithy, his posture and visage reminds me of an intense Vulcan reinforcing the gates of Hades.

Like nearly all the plane blacksmiths in Niigata, he uses scrap iron obtained in a single lot many years ago from an iron bridge that was dismantled in Yokohama Japan.

Mr. Nakano at home

I am told that most of the jigane used for plane blades in Hyogo Prefecture is old recycled anchor chains.

The fissured and cracked jigane of a a 70mm plane blade by Usui Kengo, another Niigata blacksmith (RIP). Notice the rod which retains the chipbreaker is non-existent, replaced by two short stubs. An elegant detail in this plane body by Ito-san (Soh 宗).
The back of the same Usui plane blade. Notice the cracks and inclusions in this excellent jigane exposed at the polished bevel. Very wabi-sabi. This jigane was once part of an iron bridge in the city of Yokohama, Japan.

In the case of plane blades, structural strength is not critical, so laminating a thin layer of high-carbon steel to form the cutting edge to a soft iron body is adequate. Indeed, the thicker the hard steel layer, the more time and effort it takes to sharpen the blade, so in a high-quality blade the thicknesses of the high-carbon steel layer and the soft jigane body will be carefully balanced to ensure the blade’s bevel rides the sharpening stones nicely and can be quickly abraded.

Plane blade blacksmiths use the same strip jigane used for chisels for making less-expensive plane blades.

Chisel Blades

In the case of chisels, while ease of sharpening is still important, the body and neck must be harder/stiffer to prevent them from bending, so a different, stiffer variety of jigane with a higher carbon content and fewer defects is used, and the steel layer is typically made thicker.

The jigane used by my chisel blacksmiths is a commercial product not produced anymore (thank goodness they have stockpiles) called “gokunantetsu” 極軟鉄 which translates directly to “extremely soft iron.” With a carbon content of 0.04~0.07%, a better description would be “very low carbon steel.” When heated and quenched, it doesn’t harden much.

The adventure will continue in the next exciting episode where we will bring it all together into a blade. Don’t forget to have popcorn and jujubes ready.

YMHOS

Links to Other Posts in the “Sharpening” Series

Sharpening Japanese Woodworking Tools Part 1

Sharpening Part 2 – The Journey

Sharpening Part 3 – Philosophy

Sharpening Part 4 – ‘Nando and the Sword Sharpener

Sharpening Part 5 – The Sharp Edge

Sharpening Part 6 – The Mystery of Steel

Sharpening Part 7 – The Alchemy of Hard Steel 鋼

Sharpening Part 8 – Soft Iron 地金

Sharpening Part 9 – Hard Steel & Soft Iron 鍛接

Sharpening Part 10 – The Ura 浦

Sharpening Part 11 – Supernatural Bevel Angles

Sharpening Part 12 – Skewampus Blades, Curved Cutting Edges, and Monkeyshines

Sharpening Part 13 – Nitty Gritty

Sharpening Part 14 – Natural Sharpening Stones

Sharpening Part 15 – The Most Important Stone

Sharpening Part 16 – Pixie Dust

Sharpening Part 17 – Gear

Sharpening Part 18 – The Nagura Stone

Sharpening Part 19 – Maintaining Sharpening Stones

Sharpening Part 20 – Flattening and Polishing the Ura

Sharpening Part 21 – The Bulging Bevel

Sharpening Part 22 – The Double-bevel Blues

Sharpening Part 23 – Stance & Grip

Sharpening Part 24 – Sharpening Direction

Sharpening Part 25 – Short Strokes

Sharpening Part 27 – The Entire Face

Sharpening Part 28 – The Minuscule Burr

Sharpening Part 29 – An Example

If you have questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google or incompetent facebook and so won’t sell, share, or profitably “misplace” your information.

Sharpening Part 5 – The Sharp Edge

The gem cannot be polished without friction, nor man perfected without trials.” 

Confucius

This post may not be as entertaining as my previous ones on the subject of sharpening Japanese woodworking tool blades: No swords or artwork or handsome Hollywood philosophers, I’m sorry to say. But with this post we will roll up our sleeves and dig into unartistic nitty gritty. I pray tender sensibilities are not offended. Many of my Gentle Readers already know most of what I will present in this post, but it is my fervent hope that one or two useful gems are hidden among the gritty.

You know the difference between the quality of work a sharp edge performs compared to that of a dull edge. Cuts are clean and finished surfaces are smooth, maybe even shimmering. Your tools are happy, singing and chirping as they cut away. But have you given thought to what a sharp edge really is?

Since the purpose of sharpening is to produce this condition in a blade, a clear understanding is useful. We will consider the basics in this post.

We shall also examine the naughty cutting edge that seems sharp but suddenly and unexpectedly dulls after just a little use. Would it be useful to know how to detect such a cutting edge before it fails wasting your time and money?

Let’s begin with bedrock basics.

The Basics

A cutting tool is essentially a wedge, with two flat sides meeting at an angle. Applying force causes it to sever materials, be it wood, metal, meat or mushrooms.

The geometry of this wedge is critical to its performance. At one extreme, the angle could be 90°. It won’t be sharp, it will be hard to push, and it will crush and tear wood instead of cutting it cleanly, but it will be durable.

At the other extreme, the wedge might be made more acute, say 3°. It could be extremely sharp indeed, but it would be too fragile to cut anything but whip cream for long. The point is that the sharp edge is a compromise, acute enough to cut well, but not so acute that cutting pressure and friction will make it dent, roll, wear away, crack or chip easily.

The effective blade must have a bevel angle that cuts the intended material well for a relatively long time. The words “well” and “long” in the previous sentence are where the magic lies. We will examine these important points in future posts in this series.

Germ’s Eye View

The extreme edge of the ideal metal tool’s extreme cutting should be perfectly smooth and only a single molecule thick. In the real world, cutting edges are rougher and wider, but still manage to cut pretty well.

Examine a sharp cutting edge under a microscope, and you will see imperfections. A dull blade will look even worse of course, showing dents, rips, and even cracks. 

knife edge_microscope800
The edge created by an 800 grit stone
Still sharp but starting to wear
A dulled and dented knife blade

Using a blade wears away and damages the cutting edge rounding and flattening it, destroying the geometry that makes it an effective wedge. Sharpening is the process of (1) restoring the intended wedge geometry; and (2) removing defects from the meeting of the wedge’s sides by abrading metal from one or both sides down past any damage, leaving a relatively clean, uniform wedge with minimal defects. This is the sharp edge. It is what the wood experiences. It requires effort to achieve, but it ain’t rocket surgery.

The most difficult part of achieving the two objectives listed above is making nothing from something, in a place that cannot be seen. Now that’s a Zen koan.

Building confidence in one’s ability to achieve results at the microscopic level is not easy. The key is to understand the goal, and to consistently follow reliable procedures. I will describe those goals and procedures in future posts in this series.

Edge Failure

The ideal cutting edge is uniformly sharp, but few edges in the real world meet these severe criteria at the microscopic level where it matters most. A blade may be sharp in some places, and dull in others. Likewise, a blade may cut well for a while and then dull quickly and suddenly. We have all experienced these irritating failures.

One common cause of these inconsistencies and failures is that the edge is sharp only because it has a defect called a burr. Burrs by themselves can be sharp indeed, but they are fragile and can bend, roll over, or break off at the root suddenly and unpredictably creating a nasty dull edge in an instant. A truly sharp edge will not just feel sharp, but will stay sharp for a relatively long time because it is properly shaped and well supported, instead of being only temporarily sharp because of an irregular and fragile burr.

I call burrs a “defect” because they are, but creating a burr is an important step in making a sharp edge. The trick is to continue to refine the wedge after the burr is created until it is gone and the edge is as perfect as we can reasonably expect to make it. Stop the refinement work too soon, or fail to do it completely, and all or part of that unreliable burr may survive to cause trouble.

So how does one tell if an edge is properly sharp and free of deceptive burrs without using a scanning electron microscope?

Do you remember ‘Nando’s philosophy described in my previous post? One must use reverse logic from our latin lover. Don’t rely on mahvelous appearance. Don’t rely on bar room tricks like shaving arm hair or cutting strips of paper. Develop skills and train your senses other than eyesight to detect the shape of steel at the microscopic level. This may sound strange but it is possible because your nerve endings are microscopic and can sense the difference between a burr and a truly sharp edge.

I will save the explanation of detailed techniques for a future post, but for now, here are two essential skills: Use your fingerprints to detect the presence and size of burrs. Use you fingernails to check the condition of the burr and determine when the blade is ready to move onto the next stone in the sharpening process. Please don’t cut yourself.

In the meantime, let’s have some pleasure before pain. Prepare to be amazed, Ladies and Germs, because in Part 6, coming soon, The Mystery of Steel will unfold before your very eyes! There will be marble relief carvings, bronze statues, oil paintings, gods and demons, death and destruction, and even a pagan soap opera about forbidden love. Oh my! We’re in negotiations for the movie rights now ♫꒰・‿・๑꒱ and need someone to play Vulcan. If anyone knows Spiderman’s agent, please have his people contact my people right away.

YMHOS

Links to Other Posts in the “Sharpening” Series

Sharpening Japanese Woodworking Tools Part 1

Sharpening Part 2 – The Journey

Sharpening Part 3 – Philosophy

Sharpening Part 4 – ‘Nando and the Sword Sharpener

Sharpening Part 5 – The Sharp Edge

Sharpening Part 6 – The Mystery of Steel

Sharpening Part 7 – The Alchemy of Hard Steel 鋼の錬金術

Sharpening Part 8 – Soft Iron 地金

Sharpening Part 9 – Hard Steel & Soft Iron 鍛接

Sharpening Part 10 – The Ura 浦

Sharpening Part 11 – Supernatural Bevel Angles

Sharpening Part 12 – Skewampus Blades, Curved Cutting Edges, and Monkeyshines

Sharpening Part 13 – Nitty Gritty

Sharpening Part 14 – Natural Sharpening Stones

Sharpening Part 15 – The Most Important Stone

Sharpening Part 16 – Pixie Dust

Sharpening Part 17 – Gear

Sharpening Part 18 – The Nagura Stone

Sharpening Part 19 – Maintaining Sharpening Stones

Sharpening Part 20 – Flattening and Polishing the Ura

Sharpening Part 21 – The Bulging Bevel

Sharpening Part 22 – The Double-bevel Blues

Sharpening Part 23 – Stance & Grip

Sharpening Part 24 – Sharpening Direction

Sharpening Part 25 – Short Strokes

Sharpening Part 26 – The Taming of the Skew

Sharpening Part 27 – The Entire Face

Sharpening Part 28 – The Minuscule Burr

Sharpening Part 29 – An Example

If you have questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google or incompetent facebook and so won’t sell, share, or profitably “misplace” your information.

The Carpenter and the Angel

For a change of pace, I would like to share this charming folktale from Kagoshima Prefecture, Japan, of a sort traditionally told to small children.

I have included photo extracts from the Kasuga Gongen Genki E (春日権現験記絵) scrolls painted in 1309 on silk using silver and gold paints, showing carpenters working on the Kasuga Temple jobsite.

My children and I enjoyed this story. Perhaps you and yours will too.

The Tale of Tengo and Tenjin

Long long ago and far far away, there was a very good carpenter. But he was sad because he lived alone.

So he went to the prettiest girl in the village and asked her to be his bride.

She did not want to marry, but to put him off without hurting his feelings, she decided to charge him with an impossible task. 

“If you will build me a big house, with 60 tatami mats, in a single day, then I will marry you.” (60 tatami mats = approx 99 square meters = 1065 sqft based on the standard modern tatami mat) 

The carpenter was shocked by this demand, but because he wanted her for his bride, he boldly accepted the challenge saying: “I will build you this house in one day.” 

His voice rang with confidence, but he despaired in his heart knowing he could not build such a large and beautiful house in one day. He fretted to himself  “ what shall I do, what shall I do?”

But never fear, Gentle Reader, because as you have probably guessed, our carpenter was no ordinary fellow to give up easily, and before long he came up with a daring plan.

He made 2,000 dolls out of straw and breathed on each one while casting a magical spell transforming them all into human carpenters. 

The carpenter planned the building, and he and his 2,000 man crew went to work.

A cross-section of the Carpenter’s plan (dimensions are in Sun (pronounced soon) and meters). Notice the coved & coffered ceiling in the family room on the right. The essence of traditional Japanese structural engineering in wood can also be seen in this cross-section drawing: All structural members are subject to compression, or bending moments, but no tension. No trusses.
Images from the “Kasuga Gongen Genki E,” completed in 1309
The Master Carpenter and his helper use a water trough as a water level for layout. He uses a vertical string of a fixed length with a plumb bob attached to check the high stringline’s height above the water’s surface to adjust the line to be approximately level.
A crew of 3 carpenters excavate a hole and compact the soil at the intersection of two low stringlines installed by the Master Carpenter in preparation for placing a natural foundation stone, probably intended to support a main column
Carpenters use spear planes to flatten and smooth boards and a round column. Notice the wood shavings curling from the curved blades, some on the push stroke and others on the pull stroke. Spear planes were used in Japan long before blade-in-block planes became common. The guy working on the board’s right hand end appears to have his left thumb stuck in his left eye. I hate it when that happens!
The carpenters in the upper right use chisels and wedges to split timbers, while the other workers to the left use adzes to dimension and clean split boards. One appears to be of African persuasion.
The carpenter and his young helper in the drawing’s upper half use a sumitsubo (inkpot) to snap a straight line on a timber in preparation for splitting it into boards. The carpenter at the lower right closes his left eye and focuses on his sumitsubo line, which he is using as a plumbline, to orient his steel square to vertical against the log’s end. At the same time, His buddy on the opposite end is using his bamboo pen and steel square to mark a similar vertical line on the log’s end. He wet the end of his bamboo pen with ink from the reservoir of his classic split-tail sumitsub0 laying on the ground near his foot. Notice how an adze is used to keep the log in-place.
Carpenters erecting the building’s structure. No ginpoles, shoes, or tie-offs are in sight. Probably no hardhats either. And the scaffolding looks hinky. Tisk, tisk! What would OSHA say?
A diagonal view of the Coved & Coffered ceiling installed at the family room
A corner view of the family room’s coved & coffered ceiling. Notice the coped joints. This work is typically performed by joiners, not carpenters.
Related image
The living room has an even more elegant coved & coffered ceiling in plane-finished raw Hinoki wood
The living room’s coved & coffered ceiling in Hinoki wood with a carved “rainbow beam” in the foreground. Nice work!

With the assistance of his 2,000 helpers, the carpenter completed building his bride-to-be’s house before the sun went down that day,

Overjoyed, the carpenter flew to the pretty girl’s house to tell her of his success. “I have finished the house you asked for. Please marry me now!”

“Truly?” she asked. She went to see and found a big, beautiful house with 60 tatami mats, just as she had conditioned. “I will marry you.” she said. 

And thus the prettiest girl in the village became the carpenter’s bride.

The carpenter and his bride then moved into their happy new home.

Afterwards, the 2,000 carpenters scattered throughout Japan and for many years taught others how to build houses, temples, bridges and many beautiful things of wood.

After several happy years had passed, the bride said to her husband “I have been silent up to now, but the time has come to tell you the whole truth. I am not really a human being. I am an angel named Tenjin. I came down to earth from the kingdom of heaven. But the time has now come for me to return to heaven.”

The carpenter replied: “Ah, well, now that you mention it, I am not a human being either. I’m a carpenter god named Tengo. Let’s both return to heaven together.”

So Tengo and Tenjin rose high into heaven where they still live together happily ever after.

The End

YMHOS

If you have questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” Your information will remain confidential (we’re not evil Google or incompetent facebook).