Sharpening Part 15 – The Most Important Stone

Orders are nobody can see the Great Oz! Not nobody, not nohow! 

Gatekeeper, Emerald City

Many people high-center on the question: “What is the best way to sharpen my tools?”

I was hesitant to publish this series of posts about sharpening because, beginning with this post, I must answer this question by writing about tools and techniques that contradict many people’s sharpening religion. Some of those people will doubtless become emotional. As Benny Franklin once famously said: Ça ira, ça ira.

The objective of this post is to help our Beloved Customers properly maintain, sharpen and use the blades they purchase from us. Nothing else.

This post will not be a sharpening tutorial; that will be a future post.

We will examine the process of sharpening woodworking tools using mostly waterstones. We will touch on the motivations, goals and priorities related to sharpening you should consider, the minimum set of sharpening stones I recommend, and my suggestion for the most important stone in your arsenal, one you must be proficient in using.

Motivations

The Great and Powerful Oz has spoken!

You might have noticed from my previous posts that I like to understand motivations. Am I cynical? Perhaps, but where there are smoke and lights presented and money to be made, there is almost always someone behind the curtains spinning dials and pumping pedals. Oooh, pretty lights!

Anyone who does anything has a motive for doing it, and knowing that motive can help us evaluate the validity, and sometimes even the honesty, of what they do, say and write on a particular subject. How can we best ascertain the motivations of those advocating various sharpening methods and related accoutrements? Here are some simple questions you might want to ask: Are the promotions or promoters touting sharpening stones or other stuff they might profit from? Are they selling books on sharpening? Do they teach classes on sharpening? Do they have “sponsors” or “patrons” that supply them, at no cost or with large discounts, stones, diamond paste, sandpaper, sharpening machinery, and/or honing contraptions in exchange for promoting those goods? Are they “influencers” (yes, that’s a real vocation in the YouTube World) who are compensated for clicks? Do they publish reviews on products they receive for free? You see the pattern.

Regardless of their business model or motivations, many people give good advice. But some are shills, while some others are pretenders, and their advice will be colored accordingly. Caveat emptor, baby.

And then there is the most obvious motivation. After all, it doesn’t cost even $20 to make a Mechaultrasuperfine Ninja-purple Gold-dust-infused Musashi Walk-on-Waterstone that retails for $650. And have you calculated the long-term equivalent cost of diamond paste and abrasive films? Somebody’s making serious cash.

Just once I’d like to cross the road without having my motives questioned…

Whatever stones you select, I urge you to find a good balance of performance vs cost vs time vs sustainability, with sustainability referring to both the amount of landfill-stuffing the selected process creates as well as its long-term effect for good or ill on your blades. This 4-variable calculus depends not only on the characteristics of the stones and blades you use, but on your sharpening skills too, so it may take years to find the inflection points if you take a scientific approach. The quadratic formula does not yield useful results, sorry to say.

At one time or another I have tried and tested many popular sharpening “systems” including those that rely on jigs, machinery, sandpaper, plastic films, stick, liquid, paste, and powdered abrasives, buffers, strops and even superflat ceramic plates. I enjoy learning new things. They all get the job done, and all have serious merits, but to reduce the time and brain damage involved in this calculus, a wise man will learn from professionals, people who have been down the road before and actually use tools to feed their families, and who have no conflict of interest, be it stones, books, or clicks. That’s what I finally did, and I think it worked out well. But I need to issue a disclaimer before we go further.

Disclaimer

Here it is in red letters.

I say what I believe and believe what I say, even if it offends the “gurus” of sharpening. I buy their books and DVDs, watch their YouTube videos, and try the sharpening techniques and even the “tricks” they recommend, so I like to think I am not a “frog in a well,” as the Japanese saying goes. If I don’t know something, I will say so. I am not a child to be offended if you disagree with me, but I ask you to not become orcish.

Please note that we do not now and have never received goods, discounts, or financial compensation of any kind from anyone in exchange for modifying our opinion about sharpening tools and techniques.

I have personally taught many people how to sharpen tools over the years, but have never received a red cent for my time and haven’t used those training sessions as an excuse to sell stuff.

I have never done a product review.

I have never written a book or magazine article or even a blog post with advertiser support.

Please note that the document you are currently reading cost you nothing, was written and paid for by C&S Tools alone, and that there are no banners, commercials, or outside links on any of the pages in this blog. No SEO strategy at all. If Evil Google brought you here, it was not at our bidding.

We want to help our Beloved Customers, mostly professional woodworkers who already possess a certain level of skill, to level-up those skills. C&S Tools has no commercial incentive to mislead, and will not do so. But we do have a profit motive.

Remember, we have a 100% guarantee on the materials and workmanship of the tools we sell, so our sole financial motivation, and the very reason for this blog, is to help our Beloved Customers understand the tools we sell, and to become proficient in sharpening, maintaining, and using them so they won’t mistake a lack of skill and/or experience on their part as a problem with the tool. All most professionals really need is a little guidance. We want ecstatic customers because they become repeat customers. And we do hate to disappoint.

Goals, Objectives and Priorities

I mentioned 4 variable calculus above. Actually, it’s more like 5 variable calculus, the fifth variable being your goals and objectives for sharpening. Let’s examine those in more detail.

If satisfying curiosity are among your goals, then by all means try all the stones, sandpaper, films, pastes, jigs, contraptions, and machines available and methodically test them until they turn to dust. It simplifies the calculus, but the cost and time required to reach a final conclusion may become a heavy burden.

If beautiful blades, zen-like sharpening experiences, and improved hand-soul coordination are high among your ojectives (they’re included in mine), then you will want to try natural finishing stones. I heartily recommend them to those who have reached a certain level of skill with synthetic stones and are willing to roll the bones.

The performance of the sharpening system you select, including the following factors, is something should include in your calculations:

  • Time efficiency: How long does it take you to produce an adequately sharp edge starting from a dull/chipped one? How fiddly is the process? For this calculation you will need to determine how much your time is worth. Remember, while you may enjoy sharpening, from the professional’s viewpoint, time spent sharpening is non-productive time because, during the period you are working on tools, your hands, eyes, and mind cannot work on the stuff you contracted to deliver to the Customer;
  • Cost efficiency: How many billable hours and expensive supplies/tools/equipment must you expend to obtain an adequate cutting edge? For this calculation you will need to determine the cost of time, consumables (stones, sandpaper, film, paste, powder, beer) and equipment (grinders, jigs, plates, widgets, etc.) expended in producing an adequate cutting edge long-term. Even if you are not getting paid for your woodworking, your time still has value. And don’t forget to depreciate the cost of stuff. This is where synthetic waterstones shine in comparison to the many other sharpening systems out there.
  • Cutting efficiency: How well and how long does the sharpened blade cut? For this calculation, you need to determine what an “adequate cutting edge” is for you. For instance, given the same abrasives and expending the same amount of time to sharpen two blades, the blade with a rounded bevel, or even multiple bevels, is seldom as sharp as the blade with a simple flat bevel, as can be readily confirmed using a powerful loupe or microscope to examine the last few microns of the blade’s effective cutting edge (more on this subject in Part 21 of this series). Does the sharpening system you are testing tolerate or even promote bulging bevels or multiple bevels? Get out your loupe before your inner troll makes you say things you will regret.

If curiosity, pleasure and beauty are lower priority than practical performance in your list of objectives, then I suggest you focus on synthetic waterstones and the bedrock basics, at least for now:

  1. Obtain a minimum set of basic synthetic stones, or adapt what you already have;
  2. Learn how to use them skillfully;
  3. Practice those skills until they seep into your bones.

It is not an expensive process, but neither is it the instant short-term sort of thing the Gurus of Sharpening offer in their books and DVDs and classes through their tricks and gimmicks. It takes real skills that will serve you and your tools well for your entire life. And it all starts with the minimum set of stones.

The Goldilocks Set

Related image
Oh my goodness, just look at the time! I really must be going.

Sharpening stones are expensive consumables that disappear a little with every stroke. If you need more than 5 minutes to sharpen a plane or chisel blade that was not chipped or damaged, then you may be spending too long, and wasting your time and stones, so it’s important to determine the bare minimum set of stones that work best for you.

The Goldilocks set I recommend includes the following 4~5 stones/plates:

  1. A Rough Stone: 400~800 grit rough diamond plate or two carborundum stones;
  2. Medium Stones: Two 1,000 grit waterstones (I will get into the reasons for having two stones of the same grit in another post);
  3. A Finish Stone: 6,000~8,000 grit waterstone.

Please also note that I don’t take 10,000+ grit synthetic finishing stones or natural fine-finishing stones to jobsites. This decision is based on simple practical experience: Jobsites are rough and dirty places, and stones are fragile. 

But there is an even more important reason: Airborne dust at jobsites will instantly degrade an expensive 10,000 grit rated stone to an effective 4,000 grit or less in an instant, making ultra-fine grit stones pointless. Dust will be the subject of the next post in this series.

The sharpening stones I normally use in the shop include a few beyond the minimum set described above. This set includes more stones, but the idea is that this finer gradation creates a better-quality cutting edge while consuming less of my expensive finishing stones. Natural stones can be pricey:

The packaging is fancier, but the content’s the same.
  1. One 400~800# diamond plate or two rough carborundum stones (only occasionally necessary);
  2. Two 1000# Imanishi waterstones (Bester brand) (usually necessary, but sometimes I skip it);
  3. Two 2000# Bester waterstones;
  4. One 6000# stone (fine enough for quickly finishing chisels and most planes);
  5. Two natural stones for finish planes and push chisels, or just for fun (a 10,000# synthetic stone works just as well).

Which Brand of Synthetic Stone?

I don’t think there is a dime’s worth of difference between the various synthetic stone manufacturers except for their marketing and distribution. I use what works for me and is available locally at the cheapest price. We don’t sell stones and have no relationship with or loyalty to any manufacturer. 

Regardless of manufacturer, I do recommend you avoid the extra-thick variety of synthetic stone because the oven’s heat sometimes does not penetrate deep enough leaving the interior too soft.

The Most Important Stone

Everyone focuses like a laser on the finishing stone, the final stone in the process, but when sharpening a particular blade, the most important stone is really the first stone you use in the series, be it a 400 grit diamond plate or a 2,000 grit waterstone. 

You may find this whole discussion passing strange, so I will explain. The roughest stone (or diamond plate, depending on the amount of steel that must be wasted and your available time and budget) you begin the sharpening process with builds the foundation of your cutting edge by performing the following two critical tasks:

  1. Removing damage at the cutting edge; and
  2. Shaping/flattening the cutting bevel.

Only a rough stone (400~800 grit) can accomplish the first task efficiently. If the truth of this statement is not self-evident, I won’t even try to convince you. Do the comparisons yourself: count strokes, time, and cost, measure angles, and peep at scratches through a high-power loupe.

In addition, your roughest stone or diamond plate is also the most efficient tool for shaping the bevel and cutting edge, if it needs to be adjusted. Until these two critical tasks are completed, none of the subsequent finer stones can accomplish anything efficiently, and the faster and more precisely these two tasks are accomplished the sooner one can stop sharpening and get back to the real job of woodworking.

The role of the finer stones in the sharpening sequence is simply to replace the deeper scratches left by the preceding rougher stone with progressively finer scratches. And since this work is done using more expensive, less-abrasive and slower-working stones, it is most cost/time-efficient to accomplish this task as quickly as possible. If you knock out the two foundational tasks listed above using your rough stone/plate well, then you can accomplish the subsequent polishing work at minimum cost and maximum speed. Screw it up and your blades will hate you.

Please be sure you understand the meaning of the previous 4 paragraphs. They are the heart of this article

So how does this work in real life? If the blade is chipped, dinged, or needs shaping, then I start repairing and reshaping the cutting edge’s foundation with my diamond plate. A carborundum stone, if very flat and kept flat, will work too. If my blade is only dull, but not damaged, and the bevel is in good shape, I start with a flat 1,000 grit stone. If the blade is starting to lose its edge, but is not damaged and still cuts, I start the process with a flat 2,000 grit stone. Notice the word “flat” is used a lot in this paragraph.

The objective, again, is to create an adequately sharp edge in the minimum amount of time and cost by starting the sharpening process with the cheapest, most aggressive stone appropriate to the blade’s condition for the heavy wasting and shaping thereby creating a bevel and cutting edge which you can then quickly polish to the final cutting edge using the more expensive, finer-grit stones. Wow, that’s a mouthful!

I want to make one thing perfectly clear before ending this post. Except for a few special situations, I don’t recommend using secondary bevels or micro-bevels except in special circumstances because, like training wheels on a bicycle, they are not an efficient long-term solution. In fact, they are a short-cut that has stunted many people’s sharpening skills. We will return to this subject later. 

YMHOS

This image has an empty alt attribute; its file name is tenor.gif
The Marketing Department

Links to Other Posts in the “Sharpening” Series

Sharpening Japanese Woodworking Tools Part 1

Sharpening Part 2 – The Journey

Sharpening Part 3 – Philosophy

Sharpening Part 4 – ‘Nando and the Sword Sharpener

Sharpening Part 5 – The Sharp Edge

Sharpening Part 6 – The Mystery of Steel

Sharpening Part 7 – The Alchemy of Hard Steel 鋼

Sharpening Part 8 – Soft Iron 地金

Sharpening Part 9 – Hard Steel & Soft Iron 鍛接

Sharpening Part 10 – The Ura 浦

Sharpening Part 11 – Supernatural Bevel Angles

Sharpening Part 12 – Skewampus Blades, Curved Cutting Edges, and Monkeyshines

Sharpening Part 13 – Nitty Gritty

Sharpening Part 14 – Natural Sharpening Stones

Sharpening Part 15 – The Most Important Stone

Sharpening Part 16 – Pixie Dust

Sharpening Part 17 – Gear

Sharpening Part 18 – The Nagura Stone

Sharpening Part 19 – Maintaining Sharpening Stones

Sharpening Part 20 – Flattening and Polishing the Ura

Sharpening Part 21 – The Bulging Bevel

Sharpening Part 22 – The Double-bevel Blues

Sharpening Part 23 – Stance & Grip

Sharpening Part 24 – Sharpening Direction

Sharpening Part 25 – Short Strokes

Sharpening Part 26 – The Taming of the Skew

Sharpening Part 27 – The Entire Face

Sharpening Part 28 – The Minuscule Burr

Sharpening Part 29 – An Example

If you have private questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” Your information will remain confidential (we’re not evil Google or incompetent facebook).

Sharpening Part 13 – Nitty Gritty

“The true mystery of the world is the visible, not the invisible.” 

Oscar Wilde

In this post we will dig into a few important nitty gritty points about sharpening stones everyone needs to know. Perhaps you already know all these points, but please ready your shovel because there may be at least one buried surprise.

A Flea’s-Eye View

When seen under high-magnification, the surface of a sharpening stone looks like millions of densely-packed stones embedded in a flat field. The smaller the stones, the finer the grit.

As the blade is pushed and pulled over these stones, they scratch and tear metal from the blade’s surface leaving behind scratches corresponding to the size of these small stones. This violence continues until the blade’s ura and bevel form a clean intersection of two planes.

A view of a blade sharpened with 1200 grit diamond plate showing the furrows left by individual pieces of grit

Seen under high-magnification, the cutting edge is jagged where these furrow-like scratches terminate at the cutting edge. To some degree, it may even look like a serrated sawblade. Some blades, like kitchen knives and swords, are used in a slicing motion to cut soft materials like meat and vegetables and enemy arms, and their performance benefits from a serrated cutting edge more than a highly-polished edge, and so do not need to be highly polished on fine-grit sharpening stones. 

Plane and chisel blades, however, are used to cut wood, a material typically harder than foodstuffs, in a straight-on direction, not in a slicing motion, for the most part. In this situation, a rough, serrated cutting edge is weaker than a highly polished edge because the jagged edges are projecting out into space like the teeth of a handsaw blade, and are relatively unsupported and more easily damaged than a highly-polished blade with smaller, more uniform scratches terminating more cleanly at the cutting edge. 

Therefore, in order to produce a sharp durable blade, we must make the microscopic cutting edge smoother and more uniform by using progressively finer grit stones to produce shallower and narrower scratches, and a thin, uniform cutting edge.

But how fine is fine enough? There is a curious phenomenon related to friction that is applicable to cutting edges, and is useful to understand. 

The Friction Paradox

Imagine a cube of heavy stone with its downward flat face resting on the level, flat surface of a larger slab of similar stone. Let’s say it takes some specific measure of force pushing horizontally on the stone cube to overcome the static force of friction between the two stone surfaces in order to make the cube start moving. 

If we gradually increase the degree of polish between the two contact surfaces and measure the force required to start the cube moving at each progressively higher level of polish, we will find the force decreases with each increment of increased polish, for a time. This is at least partially because the irregularities between the two surfaces (asperities) do not interlock as deeply when the surfaces become more polished. 

However, at some point, more polishing brings the surfaces of the two stones into such intimate contact that the molecular attraction between them, and therefore the force necessary to move the cube, actually increases. 

The Inflection Point

The same phenomenon occurs with tool blades. If you sharpen and polish your blades past a particular point, the friction and heat produced between blade and wood will increase, as will the energy that must be expended, while the resulting quality of the cut and durability of the cutting edge will not improve significantly. Of course, the time and money invested in stones spent sharpening past this point will be mostly wasted.

The inflection point where additional polishing yields increased friction with little improvement in cut quality will depend on your tool and the wood you are cutting, but you can gain a pretty good idea of where it is if you pay attention over time. While the sharpening stone manufacturers hate my saying it, in my well-informed opinion there is little practical gain, beyond self-satisfaction, to be had from sharpening chisels or planes past 6,000~8,000 grit, making this range of grit an inflection point in my mind. What about you?

Conclusion

I encourage you to conduct your own experiments to determine the inflection point in the case of your planes and wood you cut. Many who figure this out save themselves significant amounts of time and money sharpening over the long-term.

To those of our Gentle Readers that love sharpening more than woodworking, and enjoy putting money in the pockets of sharpening stone manufacturers more than keeping it for themselves, I apologize for pointing out the floater in the punch bowl. But you probably would have it noticed it eventually anyway, if only from the taste difference.

I will touch more on this important point in the next exciting installment in this scientificish adventure.

YMHOS

Links to Other Posts in the “Sharpening” Series

Sharpening Japanese Woodworking Tools Part 1

Sharpening Part 2 – The Journey

Sharpening Part 3 – Philosophy

Sharpening Part 4 – ‘Nando and the Sword Sharpener

Sharpening Part 5 – The Sharp Edge

Sharpening Part 6 – The Mystery of Steel

Sharpening Part 7 – The Alchemy of Hard Steel 鋼

Sharpening Part 8 – Soft Iron 地金

Sharpening Part 9 – Hard Steel & Soft Iron 鍛接

Sharpening Part 10 – The Ura 浦

Sharpening Part 11 – Supernatural Bevel Angles

Sharpening Part 12 – Skewampus Blades, Curved Cutting Edges, and Monkeyshines

Sharpening Part 13 – Nitty Gritty

Sharpening Part 14 – Natural Sharpening Stones

Sharpening Part 15 – The Most Important Stone

Sharpening Part 16 – Pixie Dust

Sharpening Part 17 – Gear

Sharpening Part 18 – The Nagura Stone

Sharpening Part 19 – Maintaining Sharpening Stones

Sharpening Part 20 – Flattening and Polishing the Ura

Sharpening Part 21 – The Bulging Bevel

Sharpening Part 22 – The Double-bevel Blues

Sharpening Part 23 – Stance & Grip

Sharpening Part 24 – Sharpening Direction

Sharpening Part 25 – Short Strokes

Sharpening Part 26 – The Taming of the Skew

Sharpening Part 27 – The Entire Face

Sharpening Part 28 – The Minuscule Burr

Sharpening Part 29 – An Example

If you have questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google or incompetent facebook and so won’t sell, share, or profitably “misplace” your information.

Sharpening Part 10 – The Ura 浦

If a craftsman wants to do good work, he must first sharpen his tools.

Confucius, The Analects
Related image
Geographic Ura
Chisel Ura

We talked about the Ura previously in post No. 9. It is a defining detail in most Japanese woodworking blades, and one we must understand if we are to efficiently sharpen them. In his post we will look into this important feature in more detail.

What is the Ura?

Japanese plane and chisel blades have a unique and intelligent design feature at what is called the “flat” on Western plane and chisel blades, called the “Ura” (pronounced oo-rah).

Ura translates into the English language as “bay,” as in a protected area where the sea meets the shore. At the center of the ura is a hollow-ground, depressed area in the hard steel hagane layer that serves two purposes. 

One purpose is to make it easier to keep the blade’s “flat” (the shiny areas surrounding the depression) planar (in the same plane).

If you pay attention when sharpening your wide Western chisels and planes you will notice that, after many sharpening sessions, the blade’s flat, which was once planar, becomes convex with a high point at the flat’s center making it difficult to keep the extreme cutting edge, especially the corners of the blade, in close contact with the sharpening stone. Yikes!

This doesn’t occur because you don’t know how to sharpen your blades, but simply because your sharpening stones/platens/paper tend to abrade the blade’s perimeter more aggressively than the center. The resulting curvature makes it more difficult to polish the flat’s extreme cutting edge. Major buzzkill.

Because of the Ura, Japanese woodworking blades are quickly fettled initially and tend to stay planar without a second thought for many years of hard use, an important benefit if you count your time worth anything.

Another purpose of the Ura is to reduce the square inches or square millimeters of hard steel you must polish during each sharpening session. As you can see from the photo above, the shiny perimeter land is all that touches the sharpening stone. Compare this with the black area which doesn’t touch the stone. That’s a lot of hard steel you don’t have to deal with. Besides making the job easier, it also saves a lot of time when sharpening and helps one’s expensive sharpening stones last longer. Time is money and stones ain’t cheap, as my old foreman used to say. Even if you don’t use your tools to make a living, remember that time spent sharpening is time stolen from the pleasure of making wooden objects.

The Downside Of the Ura

The Ura detail is not all meadow flowers and fairy farts, however, because it does have one unavoidable downside: Over many sharpening sessions the Ura unavoidably becomes gradually shallower, and the lands surrounding the Ura on four sides become correspondingly wider. It is not uncommon to see old chisels and plane blades with the depressed area of the Ura almost gone. You can postpone this day by sharpening the Ura wisely. However, in the worst case where the Ura disappears entirely, you will still be left with an entirely usable Western-style flat, so not all is lost.

In the case of plane blades, unless the plane’s ura is subjected to a brutal sharpening regime, the land that forms the cutting edge (called the “Ito ura” meaning “strand” as in a flat area on a riverside, in Japanese) tends to gradually become narrower, and even disappear entirely after numerous sharpenings. Of course, when this happens, the blade loses its cutting edge, and the land must be restored by “tapping out” or bending the cutting edge towards the ura side, and then grinding it flat to form a new ito-ura land. Tapping out a blade requires some caution, but is not difficult. I will not deal with this aspect of blade maintenance in this post.

In the case of chisels, which have smaller and shallower ura compared to wider plane blades, the land at the cutting edge does not typically require tapping out, although it’s certainly possible to tap out wider chisel blades. Narrow chisel blades, on the other hand, are difficult to tap out without damaging them due to the rigidity produced by the hard steel layer (detailed in the previous post in this series) wrapped up the blade’s sides.

Mitsuura Chisels

Ichimatsu Nomi Ura (by Kiyotada)
Spearpoint Mitsuura chisels by Sukemaru using EDM technology. Sadly, Mr. Usui no longer produces them.

Some chisels are made with multiple ura, typically called “mitsuura” meaning “triple ura.” Mitsuura chisels are more difficult to sharpen because the area of hardened steel that must be polished is larger. The Ura of mitsuura chisels also tend to wear-out quicker than single-ura chisels because each individual ura is shallower in depth than standard Ura. I am not a fan of multiple ura except in a few specific applications.

In the next stage of our journey into the mysteries of sharpening, we will wander through the metaphysical realms of the “Fae.” Be sure to have a brass bench dog in your pocket when we leave the well-lighted pathways.

YMHOS

Links to Other Posts in the “Sharpening” Series

Sharpening Japanese Woodworking Tools Part 1

Sharpening Part 2 – The Journey

Sharpening Part 3 – Philosophy

Sharpening Part 4 – ‘Nando and the Sword Sharpener

Sharpening Part 5 – The Sharp Edge

Sharpening Part 6 – The Mystery of Steel

Sharpening Part 7 – The Alchemy of Hard Steel 鋼

Sharpening Part 8 – Soft Iron 地金

Sharpening Part 9 – Hard Steel & Soft Iron 鍛接

Sharpening Part 10 – The Ura 浦

Sharpening Part 11 – Supernatural Bevel Angles

Sharpening Part 12 – Skewampus Blades, Curved Cutting Edges, and Monkeyshines

Sharpening Part 13 – Nitty Gritty

Sharpening Part 14 – Natural Sharpening Stones

Sharpening Part 15 – The Most Important Stone

Sharpening Part 16 – Pixie Dust

Sharpening Part 17 – Gear

Sharpening Part 18 – The Nagura Stone

Sharpening Part 19 – Maintaining Sharpening Stones

Sharpening Part 20 – Flattening and Polishing the Ura

Sharpening Part 21 – The Bulging Bevel

Sharpening Part 22 – The Double-bevel Blues

Sharpening Part 23 – Stance & Grip

Sharpening Part 24 – Sharpening Direction

Sharpening Part 25 – Short Strokes

Sharpening Part 26 – The Taming of the Skew

Sharpening Part 27 – The Entire Face

Sharpening Part 28 – The Minuscule Burr

Sharpening Part 29 – An Example

If you have questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google or incompetent facebook and so won’t sell, share, or profitably “misplace” your information.

Sharpening Japanese Woodworking Tools Part 1

It is well with me only when I have a chisel in my hand

Michelangelo 1475-1564
Hidari no Ichihiro Oiirenomi

This is the first in a series of posts that will describe the sharpening procedures I use and recommend for Japanese plane and chisel blades.  

This long series of posts is not comprehensive, but I hope it will at least remove some of the confusing fog that seems to swirl around the process of sharpening Japanese woodworking blades.

I didn’t learn the techniques outlined in this document from books, magazines, DVDs, tool retailers/importers/distributors, the internet, or even woodworking classes. They are the result of hard experience working with, and lessons learned from, professional craftsmen in Japan over a period of some 30 years, sometimes working as a professional woodworker, and other times working as an employee of two of Japan’s largest “super” general contractors.

This series of posts has 4 objectives: To save you (1) time, and (2) money, and to make your Japanese blades (3) sharper, and (4) cut longer. These benefits are worth obtaining if you are serious about woodworking, as professional woodworkers must be, but the requisite attention to detail and manual skills may not come easy to some. 

Indeed, you may need to unlearn bad habits, and develop new habits, skills and muscle memory in order to achieve these objectives. This is not a 90 minute process but will take months, maybe years. It certainly took me years to unlearn my bad habits and develop the necessary skills. These tips should make the process more efficient for you.

Of course these are not the only viable solutions available. Many woodworkers are self-taught nowadays and learn how to sharpen from books, magazines, videos, and classes, and have developed methods that work well for them. I am not minimizing those successes, merely proposing methods to further advance their skills.

However, be aware that several of the techniques described herein may directly contradict methods taught by the gurus that make a living scribbling, making videos, and teaching classes about woodworking. These guys achieve popularity and financial success by helping amateurs get better results very quickly after reading only a few pages in their $29.99 book, or attending their 2-hour class. To maintain their popularity and income, the techniques some (but not all) of them promote must be dumb-as-dirt simple, and are often shortcuts and gimmicks yielding “instantaneous gratification,” without the need to actually develop real skills. Nothing wrong with this, but is it good enough for you?

Unlike amateurs satisfied with superficial results, professionals need real skills that yield consistent long-term results. 

e0248405_1553630.jpg

Don’t be shocked, but I am not offering 90 minute gratification in exchange for your money.  I have no “click goals, ” or “SEO strategy” to deploy; I don’t care if you “like” me, “subscribe” to my YouTube channel” (I don’t have one), or buy access to my online tutorials (don’t do those either). The advice I offer is free, but if you prefer gimmicks to skills, the techniques described here are not for you. 

Do I have a profit motive? Nope, this information is free. I am not a sneaky corporate shill trying to sell books, magazines, videos, advertising space, banners, sharpening stones, or heaven forfend, powertools with laser sights. I have never been lent or given a tool in exchange for a nice review, or been wined, dined, laid or paid to write good things about crappy tools. 

Over the years, my professional needs and curiosity have lead me to purchase literally hundreds of planes and chisels made by many blacksmiths and companies. The keyword here is purchase. With my own money. Not a single one was ever given or loaned to me. Some I later sold, the good ones I kept. The two points I want to make are that I put my money where my mouth is; and that I have no financial conflict of interest.

I have several motivations for writing and sharing this information. One is simple convenience. Over the years, people have asked me how to sharpen Japanese tools, and I have explained the process in letters, emails, and in person many times. This document is a collection of my scribblings on the subject over several decades, and is intended to make it easier to explain the process.

Another motivation is to ensure that the people who buy the small number of hand-forged tools I sell know how to properly sharpen them, so that those tools will provide them long, productive, high-performance service. Tools have feelings too.

But my primary motivation is to fulfill a promise I made to freely share the techniques I learned from the many carpenters, woodworkers, blacksmiths, tool makers and professional sharpeners in Japan who taught me. In exchange for this free advice all I ask of you, Gentle Reader, is an open mind, and eager hands. Please, don’t cut either of them.

This adventure will continue in Part 2. But be forewarned, the price of admission may double.

YMHOS

Links to Other Posts in the “Sharpening” Series

Sharpening Japanese Woodworking Tools Part 1

Sharpening Part 2 – The Journey

Sharpening Part 3 – Philosophy

Sharpening Part 4 – ‘Nando and the Sword Sharpener

Sharpening Part 5 – The Sharp Edge

Sharpening Part 6 – The Mystery of Steel

Sharpening Part 7 – The Alchemy of Hard Steel 鋼

Sharpening Part 8 – Soft Iron 地金

Sharpening Part 9 – Hard Steel & Soft Iron 鍛接

Sharpening Part 10 – The Ura 浦

Sharpening Part 11 – Supernatural Bevel Angles

Sharpening Part 12 – Skewampus Blades, Curved Cutting Edges, and Monkeyshines

Sharpening Part 13 – Nitty Gritty

Sharpening Part 14 – Natural Sharpening Stones

Sharpening Part 15 – The Most Important Stone

Sharpening Part 16 – Pixie Dust

Sharpening Part 17 – Gear

Sharpening Part 18 – The Nagura Stone

Sharpening Part 19 – Maintaining Sharpening Stones

Sharpening Part 20 – Flattening and Polishing the Ura

Sharpening Part 21 – The Bulging Bevel

Sharpening Part 22 – The Double-bevel Blues

Sharpening Part 23 – Stance & Grip

Sharpening Part 24 – Sharpening Direction

Sharpening Part 25 – Short Strokes

Sharpening Part 26 – The Taming of the Skew

Sharpening Part 27 – The Entire Face

Sharpening Part 28 – The Minuscule Burr

Sharpening Part 29 – An Example

If you have questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google or incompetent facebook and so won’t sell, share, or profitably “misplace” your information. Promise.