The Japanese Gennou & Handle Part 12 – The Drawing Part 1/6

A gennou with a modern-style 180monme head (700gm/25oz) by Kosaburo and a black persimmon handle.

A drawing is simply a line going for a walk. 

Paul Klee

This is the first of six posts in a sub-series describing why and how to make a full-scale drawing in preparation for making your gennou handle. 

Please note that the principles described in these posts on Japanese gennou handles apply to all varieties of hammer and axe handles, and can be adapted to Western tools with great success.

Why Bother Making a Full-scale Drawing?

The greatest fun in working wood as a hobby for your humble servant is watching an object evolve in my hands, sometimes magically becoming better than what I had imagined it would be. Many Gentle Readers have the same experience.

My day job in Japan’s construction industry is not so fancy free: I spend too many hours each day planning, discussing, reviewing/marking-up, and writing about complicated drawings, so drafting a drawing to make something from just a single stick of wood feels kinda silly on the one hand and too much like real work on the other. But despite these conflicting emotions, please understand I am dead serious about the importance of a drawing, and you should be too.

So why am I recommending you make a drawing? There are 3 reasons: 

Record of Ergonomic Parameters

A gennou design must begin with the fixed parameters of your gennou head, but there are several ergonomic measurements from your own body you will need to incorporate into your handle design and meld with the specific details of the head you select. This isn’t difficult to do, but because every head, every body, and therefore every handle is different, and because there are a surprising number of details that must be combined, it can be difficult to get everything right without a drawing, especially the first few times.

Develop an Elegant Minimalistic Design

The second reason for making a drawing before you make sawdust is that the gennou I am teaching you how to make is in every way a minimalistic object comprised of only two simple components the details of which require thoughtful planning to get right. 

Allow me to share a couple of points about minimalism I learned from observing the successes and failures of world-class architects and designers in New York, San Francisco, London, Hong Kong and Tokyo: When making some things, past a certain point there is simply no room for either improvisation or trial & error without starting all over again. Assuming one is not so fatuous or deluded as to accept a monkey’s scribbling as high-art, you can imagine the resulting potential for wasted time and money and brain cells.

The famous architect Frank Loyd Wright once said: “An architect’s most useful tools are an eraser at the drafting board, and a wrecking bar at the site.” Which of these tools used with skill do you think is the most cost and time effective?

Here is wisdom: The principle of “less is more” absolutely applies, but what most people not involved professionally in the design and fabrication of expensive minimalistic physical objects do not realize is that achieving an elegant and functionally superior “Less” is neither accidental nor serendipitous, but can only be consistently achieved through “ More” thought, planning, and eyeball time, something difficult to do without a drawing.

How does this apply to making a simple gennou handle, you ask? Excellent question; You really are paying attention, I see. Once you have cut or shaved away too much wood (even a single shaving can easily be too much), there can be no more thinking, planning or eyeball time without starting over, wasting much of your valuable time and wood. Best to avoid that nonsense if possible, don’t you agree?

Take a Mulligan

The third reason for making a drawing is related to the first and based on the unfortunate likelihood that your first attempt is unlikely to produce ideal results. But don’t be discouraged because your second attempt will be much better. If you begin with a drawing, by the third attempt you will have figured out precisely what works best for you, knowledge that will serve you well your entire life. I promise.

In order to accomplish the goal of the perfect handle in just two or three iterations you will need to record the measurements, assumptions and changes you made each time so you can effectively fine tune them without having to start from scratch each time. A drawing is the best tool for this purpose.

A drawing will also help you eliminate repeated errros. A drawing will also help you eliminate repeated errros.

What to Include in the Drawing

I recommend you make a full-scale drawing of the handle viewed from the side, the top (back) edge, and the butt for a total of 3 viewpoints on a single piece of paper. You should also make cross sections at several locations at the handle inside the side view.

It is also useful include general dimensions, such as overall length, width at the eye and width at the butt to help you select a suitable piece of wood.

Developing Drawing Skills

Many have no experience making drawings. That’s perfectly OK. The only way to become competent at making simple drawings using orthographic projection is to do it.

The basic idea of orthographic projection is to represent a 3-D object in 2-D drawings, usually a side view(s), top/bottom view, and end view(s), but for the purpose of drawing a simple gennou handle without power windows and tuned exhaust, a side view, top view, end view and a few simple sections are plenty.

The drawing below is one I made for one of my gennou showing just top and side views. As you can tell, it starts with the head. Sorry, no sections. I will provide more drawings beginning with the next post.

A handmade drawing for gennou hammer made to fit the author with an 85monme Kosaburo head. You can download this drawing for your reference by clicking the button below.

If you are serious about making quality objects in wood long-term, the ability to make a simple drawing is a skill you should develop. The drawing doesn’t need to be pretty, it doesn’t even need to be detailed if you are making it for your own use, but it should represent and record things like dimensions, straight line/curves, and the locations of features.

“Why can’t I just do it in my head?” you ask? Of course that is an option; There are times when we all shape wood as we imagine it, the instant we imagine it.

But a drawing lets you combine and adjust details, wait some time to grow “fresh eyes,” and examine the product. A drawing makes it easy to make fine adjustments to a minimalist object. It lets you share the design with others and get their opinion. It lets you record your successful designs for future use. It is a powerful tool, one that will improve your woodworking skills.

And with practice, the act of making drawings refines your eye and your imagination, improving not only your design ability on-paper, but your ability to create an object in your head and examine it from different angles. Just ask any second-year architecture student.

Tools for Drawing

I will go into more details about drafting tools every woodworker should own and become proficient with in a future post, but in preparation for producing the drawing we will begin in the next post, and assuming you will make the drawing on paper instead of a board, you should gather the following minimal tools:

  1. Drawing board: A plain wooden board with four straight sides and square corners at least a little bigger than the finished gennou. Any smooth, flat board will suffice;
  2. Paper: Better quality drafting paper, vellum, or mylar is best, but any smooth, white paper will suffice;
  3. Masking tape: To secure paper to board (drafting tape will damage the drawing least);
  4. Straightedge: 12″ or longer (must be truly straight);
  5. Mechanical pencil with lead;
  6. Eraser: A good quality one that won’t leave smudges;
  7. Square: A clean framing square without burred edges will suffice;
  8. Drafting Triangle: A 45° plastic or steel drafting triangle, with minimum 8″ legs (cheap is OK);
  9. Compass: With pencil;
  10. Divider: With sharp points;
  11. Vernier caliper (not mandatory but helpful);
  12. Eraser shield (not mandatory but helpful).

The Gennou Head

In this series we’ve looked at a lot of gennou heads of many different varieties and weights made by different blacksmiths. Now that we have are on the brink of making a design drawing, however, the time for talking is over. If you don’t have a good gennou head in-hand, please get one. The design of your handle simply cannot begin without it.

In the next installment in this story of love and longing we will begin our drawing. Please sharpen your pencils and get your eraser ready.

YMHOS

Can I eat your eraser? Pleeeeeease?

If you have questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google, incompetent facebook, or troublesome Twitter and so won’t sell, share, or profitably “misplace” your information. May all my toes turn green and go squishy if I lie.

Previous Posts in The Japanese Gennou & Handle Series

The Japanese Gennou & Handle Part 2 – Ergonomics

“We become what we behold. We shape our tools, and thereafter our tools shape us.” – 

Professor Marshall McLuhan
A Kosaburo hand-forged gennou head on a Black Persimmon handle

Marketing and mass-production have changed many things, but not how the human body works.

In this post we will examine some ergonomic factors of hammers you may find interesting, and ask some questions you may want to consider.

Ergonomic Factors

Making tools that fit the user’s body and way of working is an old idea. Here is an example.

Since the time I was a boy with a Daisy BB gun, I have enjoyed making beautiful rifle stocks using marbled walnut for my bolt-action guns and curly maple for flintlock longrifles. But a custom gunstock is not just a chunk of beautiful wood.

During my research into the art I learned how craftsmen have, for centuries, made custom shotgun and rifle stocks to fit each customer’s body. Indeed, unlike factory stocks, custom gunstocks are not straight, but are bent, twisted and offset in subtle ways to fit their user’s bodies to provide a steadier hold, quicker target acquisition, and reduced recoil. These techniques work.

Indeed, there’s a surprising number of calculations one must crunch, measurements that must be made of the rifle’s components, and details of the user’s body that must be determined in advance of designing a custom rifle stock. I’m talking about a rifle made using thousands of dollars of wood and precision-machined steel, designed to fit a particular person’s body, and intended for a particular type of shooting, not a K-Mart blue-light-special killer of unsuspecting tin cans.

Through trial and error and handwork I learned how employing these ergonomic principles could yield significant improvements in the performance of everything from reproduction flintlock longrifles to 1000 yard target bench guns, and even .45 caliber bolt-action elephant rifles. When I heard that a group of specialist Japanese carpenters had, over centuries of experimentation, developed tool handle designs that applied similar principles, the pieces clicked together in my mind like a Purdy double-gun’s breech.

A hammer is not a complicated piece of precision machinery like a modern benchrest target rifle, so we tend to think of the hammer as a stupid tool lacking finesse, but I disagree. Let us consider some of the challenges the lowly hammer is expected to meet that an ergonomic design can help it overcome.

The first challenge is air drag. The hammer is the most dynamic handtool a woodworker uses, moving relatively long distances at relatively high speeds. And during the swing the hammer pushes a lot of air aside creating drag and expending energy. It adds up. This is just one reason why big-faced mallets are inefficient compared to a steel hammer. There are those who will revel in their ignorance by disputing this fact, but to them I say: There is no medicinal cure for stupidity so learn some basic math. If you remember your freshman physics classes, you will recall that the formula for drag in a fluid (which includes air) is as follows:

F_{D}\,=\,{\tfrac {1}{2}}\,\rho \,v^{2}\,C_{D}\,A

where F D is the drag force, ρ is the density of the fluid, v is the speed of the object relative to the fluid, A is the cross sectional area, and C D is the drag coefficient, a dimensionless number.

The drag coefficient depends on the shape of the object and on the Reynolds number {\displaystyle Re={\frac {vD}{\nu }}},

You don’t need to input actual numbers into this formula to see that the two factors in this equation we can readily control are the area of the hammer (A) and its speed (v). The factor that we can manipulate to our benefit when designing our handle is the area (A), which includes not only the size of our hammer’s face but the width and length of its handle.

Second, when using our hammer we draw its head back beyond the range of our vision, and then, without looking, swing it with great force to precisely hit targets as small as a chisel handle or nail head, while avoiding hitting our own head, ear and hand. If the hammer’s head naughtily wiggles out of proper alignment during the swing, a headache or smashed finger may result, so we need a hammer head and handle combination that will be easy to keep in alignment during the swing without giving it a lot of thought.

The third challenge our hammer must overcome is the tendency of its striking face to impact the target with its center of mass misaligned with the centerline of the nail or chisel, or with the striking face canted forward or backward or to the side instead of square to the target’s centerline. Think about this next time you bend a nail or your chisel cuts in one direction when you wanted it to cut in the opposite direction.

A person proficient in using mass-produced hammers must train their eye and body to match the hammer they are using at the moment. Of course, this can be done, but it is inefficient. What I am proposing instead is to design our hammer handles so they match our individual bodies and the work we need it to perform instead of being forced to adjust our grip and swing to fit standard one-size-fits-nobody design parameters.

A lot of blowhards and marketing departments give lip-service to so-called ergonomics, but not here at C&S Tools, madame. Indeed, in future posts in this series we will discuss in great detail a number of ergonomic factors our Beloved Customers should include in their gennou design specific to their individual bodies and style of work, including the length of the hammer handle, twist and offset, grip location and shape, handle details to help the gennou index automatically in their hand without having to actually look it, and of course, the angle of the head.

We will both explain why and show you how to design, draft, and make a hammer handle suited to overcome these challenges while in your hand.

Questions

I am not fond of gaudy, decorated tools, but that does not mean my tools are plain as mud. As you may be able to tell from the photographs of one of my favorite gennou in this article, I enjoy subtle details that give them a unique attractive appearance, especially if those details improve their performance. My gennou are tools that please both my eyes and hands. I don’t know if they have shaped me, as Professor Mcluhan suggests, but they certainly give me more confidence and joy in my work than a run-of-the-mill rubber-handled hammer ever could.

For years I have encouraged people to ask themselves three questions on the subject of hammers. So I pose them to you now, Gentle Reader.

First, does your hammer and its handle fit your body and style of work, or is it a “one size fits nobody” product made by a conglomerate that knows everything about selling hammers but nothing about using them?

Second, is your hammer aesthetically pleasing to your eye and an extension of your hand, or is it like every other hammer that ever fell off the hardware store’s rack?

And finally, is your hammer likely to become an heirloom appreciated by your descendants, or will it end its days sad and lonely in a landfill?

If you answered nay to any of these questions, I promise you will find something of value in this series of posts.

In the next post in this series on designing and making gennou handles, we will examine some history and the ergonomic factors that resulted in the design that is the subject of this series.

YMHOS

If you have questions or would like to learn more about our tools, please use the questions form located immediately below. Please share your insights and comments with everyone in the form located further below labeled “Leave a Reply.” We aren’t evil Google or incompetent facebook and so won’t sell, “share,” or profitably “misplace” your information.

Previous Posts in The Japanese Gennou & Handle Series